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Abstract

Gauss-Hermite Quadrature (GHQ) is often used for numerical ap-
proximation of integrals with Gaussian kernels. In generalized linear
mixed models random effects are assumed to have Gaussian distrib-
utions, but often the marginal likelihood, which has the key role in
parameter estimation and inference, is analytically intractable. In ad-
dition to Monte Carlo methods, first or second order Taylor expansion,
Laplace approximation or GHQ are feasible tools for numerical evalu-
ation of the integrals. In this paper we review the key ideas of GHQ.
Nonparametric Maximum Likelihood (NPML) estimation is shown to
be a flexible version of GHQ. A binary nested random effects model
is fitted to a real data set using GHQ.

Keywords: Function Interpolation; Generalized Linear Mixed
Model; Hermite Polynomial; Mixing Distribution; Nonparametric Max-
imum Likelihood.
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1 Introduction

Generalized linear models are powerful tools for data analyses, specially for
discrete response data. Overdispersion is a common problem in many data
sets which are fitted by such models. This problem makes inference on para-
meters unreliable. Adding a scale parameter is suggested in these cases but,
this ignores the source of overdispersion. Generalized linear mixed models
are often used to model overdispersion, but then the marginal likelihood is
usually analytically intractable. Different approximation methods are avail-
able, of which GHQ is one of the most used. Poor approximation of marginal
likelihood may occur using GHQ, and knowing its basics helps the user to
recognize these cases.

1.1 Interpolation

The fundamental idea of numerical approximation of integrals is approxi-
mation of integrable functions. Hence, function interpolation plays the key
role. Assume that n observations of an unknown function f are available:
(x1, y1) , (x2, y2) , ..., (xn, yn) and good approximation to f is desired.
By Taylor’s theorem, the function f which is contiguously arbitrary order

differentiable on the closed interval [a, b] can be approximated as a polynomial
function. Approximation can be improved by adding higher orders.

1.2 Ordinary Interpolation

We look for a polynomial of degree at most n − 1 that passes through all
n observations (x1, y1) , (x2, y2) , ..., (xn, yn). This can be found analytically
by solving a system of n polynomial equations, which is often hard to solve,
especially for large n. Least squares fit of a saturated polynomial model is
another solution. In this case the residual sum of squares is exactly equal to
zero which is not statistically interesting. To find the polynomial which passes
through all n observations we may use the auxiliary polynomial functions as
well:

π (x) = (x− x1) (x− x2) · · · (x− xn) , (1)

li (x) =
(x− x1) (x− x2) · · · (x− xi−1) (x− xi+1) · · · (x− xn)

(xi − x1) (xi − x2) · · · (xi − xi−1) (xi − xi+1) · · · (xi − xn)
.
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The function li (x) is a polynomial function of degree at most n − 1. By
definition li (xj) = δij where δij is the Kronecker delta. Hence,

f (x) =
nX
i=1

li (x) yi, (2)

that is a polynomial function of degree n− 1 passes through n data points,
so is the desired polynomial.

1.3 Hermite Interpolation

Assume that we have observations in triples (xi, yi, y0i) , i = 1, ..., n, where y
0
i

is the first derivative (gradient) of reference unknown function f at the point
xi. Hermite interpolation is a generalization of ordinary interpolation when
gradients are available in addition to the values. Fort (1948) generalized it
to derivatives of arbitrary order.
We look for a polynomial function of order at most 2n − 1 that passes

through all values (xi, yi) , with first derivative equal to y0i at xi , i = 1, ..., n.
Similar to (2) we write

f (x) =
nX
i=1

hi (x) yi +
nX
i=1

hi (x) y
0
i,

where hi (x) and hi (x) , i = 1, ..., n, are polynomials of order at most 2n− 1.
They satisfy

hi (xj) = δij, h0i (xj) = 0, h
0
i (xj) = δij . (3)

From (1) we know li (xj) = δij is a polynomial of order n − 1, we conclude
l2i (x) that is a polynomial of order 2n− 2 seems to be a good candidate for
hi and hi . To make hi and hi polynomials of order 2n− 1 we assume:

hi (x) = ri (x) l
2
i (x) , hi (x) = si (x) l

2
i (x) ,

where ri (x) and si (x) are both at most linear functions of x. We find ri (x)
and si (x) such that hi and hi satisfy (3). Hence,

ri (xi) = 1, si (xi) = 0, r0i (xi) + 2l
0
i (xi) = 0, s0i (xi) = 1. (4)
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The functions si (x) = x− xi and ri (x) = 1− 2l0i (xi) (x− xi) satisfy (4), so
we have the Hermite interpolation formulae

hi (x) = [1− 2l0i (xi) (x− xi)] l
2
i (x) , hi (x) = (x− xi) l

2
i (x) .

Figures 1 and 2 compare ordinary interpolation and Hermite interpolation
for two functions with 5 nodes established at points (-2.02,-0.96,0,0.96,2.02).
Ordinary interpolation gives a polynomial of degree 4 and Hermite interpo-
lation gives a polynomial of degree 9.

xaxis

f(x
ax

is
)

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

O

O

O
O

O

Real Function
Usual Interpolation
Hermit Interpolation

O Nodes
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2 Integral Evaluation

A way to do numerical approximation of integrals is to divide integral bound
[a, b] into equally lengthed subintervals and evaluate Riemann upper and
lower bounds. This method is feasible but often computationally time con-
suming. We look for a method to approximate the integral using fewer sum-
mations and greater accuracy.
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Assume an integral of the form
R b
a
f (x)w (x) dx. The functions f(x),

w(x) and g (x) = f (x)w (x) are called the integrable, weighting and product
functions respectively. Numerical approximation using quadrature method
is based on situations that the form of f is too complex to calculate the inte-
gral using antiderivative function or even analytically intractable. However,
integration of

R b
a
Pn (x)w (x) dx is easy. The function Pn (x) is an nth order

polynomial approximation of f (x) and hence we expect two integrals to be
almost equal if we could approximate it well in [a, b].

2.1 Hermite Quadrature

To approximate an integral of the form
R b
a
f (x)w (x) dx using Hermite Quadra-

ture (HQ), function f is substituted by its Hermite interpolation:

Z b

a

f (x)w (x) dx
.
=

Z b

a

P2n−1 (x)w (x) dx =
nX
i=1

Hiyi +
nX
i=1

Hiy
0
i,

where
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Hi =

Z b

a

hi (x)w (x) dx =

Z b

a

[1− 2l0i (x) (x− xi)] l
2
i (x)w (x) dx, (5)

Hi =

Z b

a

hi (x)w (x) dx =

Z b

a

(x− xi) l
2
i (x)w (x) dx.

The integralsHi andHi are known as the quadrature weights. As an example
figures 3 and 4 show function f (x)w (x) versus P (x)w (x) both with w (x) =
e−x

2
.
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As the figures show, the choice of nodes in [a, b] plays the key role in a

good approximation of integrals. Thompson (2000) suggests using a random
process to choose nodes named the random quadrature (RQ) method.

2.2 Gaussian Quadrature

Gaussian quadrature (GQ) maybe regarded as another reformulation of (5)
in situations where Hi vanishes:
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Hi =

Z b

a

hi (x)w (x) dx =

Z b

a

π (x) li (x)w (x) dx,

Hi =

Z b

a

hi (x)w (x) dx =

Z b

a

l2i (x)w (x) dx− 2
Z b

a

l0i (x)π (x) li (x)w (x) dx.

The polynomial π (x) is an arbitrary polynomial function of degree n. If
π (x) is a polynomial perpendicular to li (x) with respect to the weighting
function w (x) , that is Z b

a

π (x) li (x)w (x) dx = 0, (6)

the second term of HQ formulae vanishes and simplifies as follows:R b
a
f (x)w (x) dx

.
=
P

Hiyi.

Quadrature nodes (xi’s) are roots of polynomial π (x) , (1). Note that we
fit a polynomial function of degree 2n− 1 to the integrable function f using
just n pairs (xi, yi)!
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2.3 Gauss—Hermite Quadrature

GQ method for the Gaussian kernel as the weighting function (w (x) = e−x
2
)

with integral bounds (−∞,+∞) often is called Gauss—Hermite quadrature
(GHQ). Fortunately function π that satisfies (6) is the well-known Hermite
polynomial. The first five Hermite polynomials are:

H0 (x) = 1, H1 (x) = 2x,

H2 (x) = 4x2 − 2, H3 (x) = 8x
3 − 12x,

H4 (x) = 16x4 − 48x2 + 12, H5 (x) = 32x
5 − 160x3 + 120x.

After some algebraic calculations we find quadrature weights as follows:

Hi =
2n+1n!

√
π

Hn+1 (xi)
,

where x1, ..., xn are quadrature nodes, the roots of Hn (x) the Hermite poly-
nomial of order n. The main computational problem in GHQ method is
finding the form of Hn (x) . Fortunately the iterative Hermite polynomial
unity helps to find analytical form of Hn (x) from Hn−1 (x) and Hn−2 (x):

Hn (x) = 2xHn−1 (x)− 2 (n− 1)Hn−2 (x) .

The Hermite polynomials can be calculated using algebraic software such
as MAPLE orMATHEMATICA up to any arbitrary order. However, quadra-
ture nodes and weights up to 20 nodes are available in Abramowitz and
Stegun (1965).
Figure 5 represents quadrature nodes of GHQ method (horizontal axis)

versus quadrature weights (vertical axis) that confirms quadrature nodes are
symmetric about zero.

2.4 Adaptive Gauss—Hermite Quadrature

Quadrature nodes in both GQ and GHQmethods are not arbitrary unlike the
HQmethod, so appropriate choice of number of quadrature points to approx-
imate the integrable and/or product functions accurately has an important
role. Sometimes many quadrature points may be needed to approximate
the functions adequately, depending on form of curvature and the nonva-
nishing domain of the integrable and product functions. Centralization of
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the product function about zero or standardization is recommended in Liu
and Pierce (1994) under the name of adaptive Gauss-Hermite quadrature
(AGHQ). AGHQ often decreases the number of required quadrature points,
especially for product functions with maxima far from zero, but it inflates
the computational complexity.
Fast vanishing tails of the Gaussian kernel (weighting function) help GHQ

to approximate functions accurately with a moderate number of quadrature
points. Equivalence of GHQ using many quadrature points with AGHQ using
few has been reported for a binary random effects model by Lessaffre and
Spiessens (2000). Rabe-Hesketh et al. (2002) have described AGHQ and
have implemented it in STATA. SAS PROC NLMIXED also uses AGHQ
to fit generalized linear mixed models. Often use of different numbers of
quadrature points is suggested to investigate stability of the approximated
marginal likelihood.
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Fig. 5: Gauss-Hermite quadrature nodes and weights.
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3 Application to a Binary Random Effects
Model

Assume the following three level binary random effects model that often is
used for analysis of repeated measurements, Anderson and Aitkin (1985).

yijk | μ,Oi, Rij
i.i.d∼ Bin (nP , pij) , (7)

log

µ
pij

1− pij

¶
= μ+Oi +Rij,

i = 1, ..., nO, j = 1, ..., nR, k = 1, ..., nP ,

Oi ∼ N
¡
0, σ2O

¢
, Rij ∼ N

¡
0, σ2P

¢
.

Writing yij. =
nPP
k=1

yijk , after some algebraic calculations the marginal log-

likelihood (μ, σO, σP ) can be written

nOP
i=1

log

½R +∞
−∞

µ
nR
Π
j=1

R +∞
−∞

∙
exp{(μ+√2σOOi+

√
2σRRij)yij.}

1+exp{(μ+√2σOOi+
√
2σRRij)yij.}nP

¸
e−R

2
ijdRij

¶
e−O

2
i dOi

¾
.

Unfortunately the integrals above are analytically intractable. The ap-
proximated marginal log-likelihood using GHQ is

(μ, σO, σP )
'∝

nOP
i=1

log

∙
nvP
v=1

wv (v)

½
nR
Π
j=1

nuP
u=1

wu (u)

µ
exp[{μ+√2σOxv(v)+√2σRxu(u)}yij.]

1+exp[{μ+√2σOxv(v)+√2σRxu(u)}yij.]nP
¶¾¸

.

The triples (nu, xu, wu) and (nv, xv, wv) are the number of quadrature
points, quadrature nodes and quadrature weights with respect to the level 2
and level 1 of the data respectively.
Approximated marginal log-likelihood can be maximized by the standard

nlminb function of S-PLUS using Quasi—Newton algorithm. Roots of Her-
mite polynomials also are achievable using polyroot.
The model (7) has been used to investigate effect of appraisers and trial

repeats on ability of distinguishing correct parts from failed parts. The data is
reported in Automotive Industry Action Group (2002) p. 127 and analyzed
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by another method there using Kappa measure of agreement. Here we fit
binary mixed effect model.
Parameter estimations and 95% confidence intervals found using para-

metric bootstrap is reported in the following table.

ML Estimates 95% Confidence Interval
μ 2.91 (2.47, 3.37)
σO 0.00 (0.00, 0.48)
σR 0.71 (0.00, 1.10)

Insignificant variance components agrees with analysis of Automotive In-
dustry Action Group (2002) that is insignificant appraiser and trial repeats
effect. To investigate validity of estimated parameters slice approximated
log-marginal likelihood with respect to the parameters has been shown in
Figures 6.

4 Nonparametric Maximum Likelihood

GHQ and AGHQ are useful tools for parameter estimation with Gaussian
mixing distributions. For other parametric mixing distributions, McCulloch
(1997) recommends MCEM and MCNR algorithms for ML estimation of
parameters, which works well especially in high-dimensional integrals. How-
ever, Heckman and Singer (1984) showed that parameter estimates in mixed
models are sensitive to the choice of mixing distribution, Davies (1987) also
reported similar results. Nonparametric Maximum Likelihood (NPML) of
mixing distribution is introduced by Laird (1978). Aitkin (1999) made a
general framework for NPML estimation of parameters in generalized linear
mixed models and has implemented it in GLIM.
The form of approximated likelihood using GHQ helps to achieve NPML

estimators:

l (θ) =
P
i

log
¡R

fy|τ ifτ idτ i
¢
.

The conditional distribution fy|τ i also may have similar integrations in
itself that can be handled similarly, so we can approximate l (θ) as

l (θ)
.
=
P
i

log

µP
v

wv (v) fy|τ i (xv (v))

¶
.
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Fig. 6: Slice marginal likelihoods.

For the case of Gaussian mixing distribution (fτ is Gaussian), wv and xv
are known as quadrature nodes and weights in GHQ as we discussed. How-
ever, in general case it is not easy to find. After observing the data, maximum
likelihood is used to estimate wv and xv in addition to the parameter vector
θ. NPML approach may be regarded as a method which discretizes unknown
mixing distribution and estimates position of discretization and probability
mass at that position both, in addition to the model parameters. Fotouhi
(2003) compared MCMC, GHQ and NPML methods and found NPML is
preferable in most cases. Unfortunately computational complexity of NPML
increases exponentially as the number of sample size increases. Vermunt
(2003) introduced a modified EM algorithm to solve the exponential increase
of the computational complexity for NPML estimates in three-level models.
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