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Abstract

This work presents a variation of the elastic net penalization method. We propose applying a
combinedℓ1 andℓ2 norm penalization on a linear combination of regression parameters. This ap-
proach is an alternative to theℓ1-penalization for variable selection, but takes care of thecorrelation
between the linear combination of parameters. We devise a path algorithm fitting method similar
to the one proposed for the least angle regression. Furthermore, a one-shot estimation technique of
ℓ2 regularization parameter is proposed as an alternative to cross-validation. A simulation study is
conducted to check the validity of the new technique.
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1. Introduction

Regression aims at predicting the response variabley, givenp covariatesx1, . . . ,xp

X = (x1 x2 . . . xp) ,β =





β1
...
βp



 ,1 =

(1
...
1

)

,y = β01+Xβ + ε, (1)

whereε is a vector of Gaussian noise. Regression has two aspects, parameter estimation
and prediction. It is known that the famous ordinary least squares (OLS) estimator, ob-
tained by minimizing the residual squared error, presents too much variance if explanatory
variables are correlated or unimportant covariates are considered in the linear model. The
OLS method is inefficient in both prediction and estimation of β for the case of largep and
smalln which is appearing in modern applications.

The use of penalized parameters as a regularization term in linear regressions has
proven to be an effective approach to the problem of large variance estimates. Ridge re-
gression is a good example of such technique. The ridge regression improves the prediction
performance by reducing variance at the cost of a small bias by solving

β̂ridge = argmin
(

‖y −Xβ‖22 + λ‖β‖22
)

, (2)

where‖β‖22 =
p
∑

j=1

β2
j andλ is the penalization constant.

However,ℓ2-penalization can only shrink the parameters towards0 and does not provide
the sparsity required for successful variable selection. Replacing this penalization term by
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theℓ1-norm of the parameters leads to the lasso (Tibshirani, 1996), a well-known technique
for variable selection

β̂lasso= argmin
(

‖y −Xβ‖22 + λ‖β‖1
)

, (3)

where‖β‖1 =
p
∑

j=1

|βj | .

Though the lasso presents good computational properties, it fails to select groups of
correlated variables. The lasso also estimates only up ton coefficients, which may be
inconvenient when working in high dimensional spaces (p ≫ n).

Over the past twenty years, many regularization terms have been proposed. For instance
Frank and Friedman (1993) proposed aℓq-norm based penalization in theBridgeregression

β̂bridge= argmin



‖y −Xβ‖22 + λ

p
∑

j=1

|βj |q


 . (4)

Lasso and Ridge are both particular cases of this penalization for q = 1 andq = 2 re-
spectively. Optimizing overλ and more speciallyq is computationally heavy. The bridge
regression only offers variable selection forq ≤ 1. Furthermore,0 < q < 1 gives a non-
convex optimization problem, since|βj |q is a non-convex ball. Hence, it is difficult to find
the solution of the regression problem, even for fixed valuesof q.

More recent works suggest non-convex penalization, using adifferent approach such
asSCADof Fan and Li (2001). The penalty function is singular at the origin to produce
sparsity and is bounded to get unbiased estimates for large coefficients.

However,ℓ1 andℓ2 penalization are still used as improved versions of the OLS esti-
mates. Zou and Hastie (2005) took advantage of both techniques to get a reliable way of
handling selection of groups of correlated variables, by combiningℓ1 andℓ2 regularization
terms, called the elastic net penalty

β̂EN = argmin



‖y −Xβ‖22 + λ1

p
∑

j=1

|βj |+ λ2

p
∑

j=1

|βj |2


 . (5)

The optimization of two different penalization constants through cross-validation can be
highly time-consuming, but as shown in Zou and Hastie (2005), solving the elastic net for
a given value ofλ2 is equivalent to solving the lasso problem. The least angle regression
(Efronet al., 2004) is a path algorithm that finds the solution path to the lasso problem with
computational complexity of a single least squares. Therefore, cross-validation is only
required on the quadratic penalization constantλ2. By taking a Bayesian perspective we
propose using marginal likelihood maximization to estimateλ2.

Our proposed model is inspired by a combination of the elastic net (Zou and Hastie,
2005) and the generalized lasso (Tibshirani and Taylor, 2011). Instead of penalizing the
parameters, we propose penalizing a linear combination of the parameters

β̂GEN = argmin
(

‖y −Xβ‖22 + λ1‖D1β‖1 + λ2‖D2β‖22
)

. (6)

This model collects a wide set of regression problems for different choices ofD1 andD2.
An ℓ1-penalization to structure the sparsity andℓ2-penalization to control the correlation
among the linear combination of parameters.
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In some applications, sparsity over a linear combination ofparameters is required, such
as the fused-lasso (Tibshiraniet al., 2005) in which the penalization is applied on the dif-
ference between consecutive parameters. Theℓ2 penalization is not always an appropriate
regularization. We suggest to generalize theℓ2 penalty by implementing the Mahalanobis
regularization which givesℓ2 penalization as a special case. The choice of the regulariza-
tion design matricesD1 andD2 depends on the context.

2. Generalized Elastic Net

We encourage the Bayesian perspective over the regularizedregression problem. In other
words, we propose to look at the squared residual terms as thelog of the likelihood, and
regularization over the parameters as the log of the prior distribution assumed for the regres-
sion parameters. This view gives a convenient method for estimation of the regularization
constant. Moreover, motivated by the hierarchical Bayes modelling, if likelihood distribu-
tion is connected to the distribution ofy | Xβ, then the regularization term is connected to
the distribution ofβ | X and the distribution ofX. This view suggests using a penalty that
is a function of the design matrixX.

2.1 Tuning ℓ2 penalization

We propose taking a Bayesian view to the linear regression problem. The least squares
estimates coincide with the maximum likelihood estimator if we assume that response vari-
abley is normally distributed around the fitted linear combination of the covariatesxj . The
model-based variant will bey | X,β ∼ Nn(Xβ, σ2In), in whichNn(µ,Σ) denotes the
multivariate normal distribution having the mean vectorµ and variance-covariance matrix
Σ.

Therefore, the Mahalanobis penalty is equivalent to a Gaussian prior over the regression
parametersβ

β ∼ Np(0, τ
2Ω), (7)

whereΩ is the shape of the penalization prior andτ2 is the scale parameter.

The maximum posterior estimation ofβ is equivalent to

β̂MAP = argmin

(

‖y −Xβ‖22 +
σ2

τ2
‖Ω− 1

2β‖22
)

. (8)

The maximum a posteriori estimation ofβ coincides with the generalized ridge esti-
mation if σ2

τ2
is replaced byλ andΩ− 1

2 is replaced byD2 in (8). As both problems are
analytically equivalent, we can use the Empirical Bayes engine to estimate the prior pa-
rameters, hereλ. The empirical Bayes principle maximizes the marginal likelihood as a
function ofλ

pλ(y | X) =

∫

. . .

∫

Rp

p(y | X,β)pλ(β)dβ λ =
σ2

τ2
. (9)

It is easy to see

y | X, λ ∼ Nn

[

0, σ2

{

In −X
(

X⊤X+ λΩ−1
)−1

X⊤

}−1
]

. (10)

Since the choice of a penalization is equivalent to a prior distribution on the parameters,
one can select a subjective regularization. For instance, if there is a knowledge that some
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Table 1: Prior distribution shapesΩ on the parameters and associated quadratic penalties.

Ω Penalization

Ip ‖β‖22
(X⊤X)−1 ‖Xβ‖22
(

X
⊤
X

n

)−1
1
n
‖Xβ‖22

(αIp + (1− α)X⊤X)−1 α‖β‖22 + (1− α)‖Xβ‖22
(

αIp +
(1−α)

n
X⊤X

)−1
α‖β‖22 + (1−α)

n
‖Xβ‖22

variables are inter-correlated, it is more sensible to choose regularization that reflects this
information. This is why we encourage choosingΩ = (X⊤X)−1. This choice ofΩ
corresponds to penalization over the fitted values, see Table 1 for more details. Table 1 also
presents different covariance matricesΩ and the associated regularizations.

We optimize the likelihood as a function ofλ andΩ. Hence, it is possible to make
a more flexible model by introducing another parameterα. This parameter is reserved to
discriminate between two possible prior distributions. Setting α = 0 corresponds to a
ℓ2-penalization of the fitted values and settingα = 1 corresponds to the ridge regression.

2.2 Tuning ℓ1 penalization constant

It is feasible to reduce the elastic net problem to the lasso regression. Once we are brought
back to the lasso, the path algorithm (Efronet al., 2004) provides the whole solution path.

We apply a similar analogy to reduce the generalized elasticnet problem to a gener-
alized lasso problem. The whole solution is provided in Tibshirani and Taylor (2011). It
is not difficult to see the following change in the response vector and the design matrix
reduces a generalized elastic net regression to a generalized lasso regression

X∗ =

(

X√
λ2Ω

− 1

2

)

andy∗ =

(

y
0p×1

)

, (11)

whereΩ− 1

2 = D2 is the quadratic design matrix. In other words,

‖y∗ −X∗β‖22 + λ1‖D1β‖1 = ‖y −Xβ‖22 + λ1‖D1β‖1 + λ2‖D2β‖22. (12)

The generalized elastic net is therefore equivalent to the generalized lasso for the trans-
formedy∗ andX∗. This allows us to use the computationally efficient path algorithm
presented in Tibshirani and Taylor (2011) to solve the generalized elastic net problem .

3. Simulation

We set up two separate simulations to verify the behaviour ofour proposed method. The
first simulation explores the estimation quality of theℓ2 regularization constant. The second
simulation aims at showing the behaviour of penalizing linear combinations. We choose a
common choice forD1 = D2 = X. This penalization regularizes the fitted values.
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3.1 Estimating the ridge parameter

In the first simulation we simulate 30 explanatory variables, each variable independently
sampled fromN (0, 1). We producen = 450 of such data points and sample the regression
coefficients fromN (0, 5Ω). We have chosen three different structures forΩ. The variance-
covariance structureΩ−1 is Ip, X⊤X, or a convex combination of these two structures
being0.2Ip+0.8X⊤X. Note that we did not consider anℓ1 penalization for this simulation
since the aim of the study is to check the efficiency of the method for estimation of theℓ2
penalizing constant. The errorsε are taken independently fromN (0, 0.01).

We used the following log reparametrization(θ1, θ2) to avoid constrained numerical

optimization procedures. We usedθ1 = log τ2 andθ2 = log
{

α
1−α

}

.

3.1.1 Penalizing parametersΩ = Ip

If we choose the independent structure, maximum a posteriori analysis coincides with the
ridge regression withλ = σ2

τ2
. Therefore, the estimation ofλ coincides with the estimation

of the inverse of the signal to noise ratio. Forσ2 = 0.01, λ̂ = 0.01
exp(θ̂1)

, and it is more

intuitive to check the quality of estimation directly onθ1, see Figure 1. Figure 1 (left panel)
illustrates the marginal likelihood curves and the maximummarginal likelihood value for
100 simulations. The true value ofθ1 matches the marginal maximum likelihood estimator,
confirming the estimation quality forΩ = Ip.
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Figure 1: Marginal log likelihood curves,log pλ(y | X) for Ω = Ip (left panel) andΩ =
(X⊤X)−1 (right panel). The gray curves demonstrate the marginal loglikelihood and black
circles show the maximum marginal log likelihood found by the numerical optimization
routine. The vertical dashed line illustrates the mean of the maximum likelihood points
while the solid vertical line shows the true value.

We get an estimator oflog(τ2) by averaging the maxima over a hundred simulations.
This leads to the estimator̂τ2 = 4.98 within the95% confidence interval of[4.91, 5.06],
which includes the true value used for the simulation (τ2 = 5).

3.1.2 Penalizing fitted values:Ω =
(

X⊤X
)−1

The behaviour of the marginal likelihood is not much different with independent structure
Ω = Ip. In both cases the asymptotic normal confidence interval includes the true value of
θ1.
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3.1.3 Mixture penalizationΩ =
(

αIp + (1− α)
(

X⊤X
))−1

The mixture structureΩ =
(

αIp + (1− α)
(

X⊤X
))−1

does not have an intuitive inter-
pretation. Though, in this settingλ estimates the volume of the ball, andα estimates the
shape of the ball. Figure 2 shows marginal log likelihood contour. This figure suggests that
estimation of the volumeλ is easier than the shapeα.

Figure 2: Left panel: the marginal log likelihood surface. Right panel: the marginal log
likelihood contour.

3.2 Tuning the lasso parameter

The path algorithm allows to find the whole solution path for different values ofλ1. Figure 3
shows the trajectories of the fitted values (left panel). We observe that the choosingΩ
cannot define much sparsity over the fitted values even while the ℓ1 penalization is over
the fitted values. A similar behaviour appears when only one regression parameter is in the
model, see Figure 4.
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Figure 3: The fitted values (left panel) and parameter (right panel) trajectories while data
are simulated withβ⊤ = (6, 6, 6, 6,−6,−6,−6,−6).
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ŷ

0 2 4 6 8

0

1

2

3

4

5

6

λ1

β̂

Figure 4: The fitted values (left panel) and parameter (right panel) trajectories while data
are simulated withβ⊤ = (6, 0, 0, 0, 0, 0, 0, 0).

4. Conclusion

We proposed a generalization of the elastic net regression.We applied a combination of
ℓ1 andℓ2 penalization on a linear combination of the parameters, defined by two design
matricesD1 andD2. Both matrices have a separate and distinct impact, asD2 takes care
of the correlation appearing between the linear combinations andD1 selects the linear
combinations.

The design matrix for the quadratic penalization is directly linked to a prior distribu-
tion. This view provides a fast method of estimation for the quadratic penalization constant
through the maximum marginal likelihood. The marginal likelihood can be successfully
maximized and be used as an alternative to cross-validation.

The design matrixD1 defines sparsity constraints on the parameters. Solution tothis
problem is found by the generalized lasso path algorithm (Tibshirani and Taylor, 2011).
For a givenλ1 andλ2 the path algorithm for the generalized lasso can be used by little
modification on the response vector and the regression design matrix to fit the generalized
elastic net regression.

As a quick example, we applied the generalized elastic net regression to penalize the
fitted values. We surprisingly observed that shrinkage appears over fitted values by increas-
ing theℓ1 penalizing constant, but not sparsity. It looks that the sparsity behaviour of the
lasso penalty over a linear combination of parameters depends on the design matrixD1 that
produces the linear combinations.
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