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Generalized Elastic Net Regression
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Abstract

This work presents a variation of the elastic net penatimathethod. We propose applying a
combined?; and/, norm penalization on a linear combination of regressiomupaters. This ap-
proach is an alternative to tig-penalization for variable selection, but takes care ofttreelation
between the linear combination of parameters. We devisgragbgorithm fitting method similar
to the one proposed for the least angle regression. Furtretra one-shot estimation technique of
{5 regularization parameter is proposed as an alternativeossevalidation. A simulation study is
conducted to check the validity of the new technique.
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1. Introduction

Regression aims at predicting the response varigb@gvenp covariatesx, ..., x,
B 1
X=(xi1x2...%),8=| : |, 1=|:],y=51+XB+e, 6y
Bp 1

wheree is a vector of Gaussian noisRegression has two aspects, parameter estimation
and prediction. It is known that the famous ordinary leastasgs (OLS) estimator, ob-
tained by minimizing the residual squared error, presausrtuch variance if explanatory
variables are correlated or unimportant covariates arsidered in the linear model. The
OLS method is inefficient in both prediction and estimatiérBdor the case of large and
smalln which is appearing in modern applications.

The use of penalized parameters as a regularization terrimearl| regressions has
proven to be an effective approach to the problem of largenee estimates. Ridge re-
gression is a good example of such technique. The ridgessigreimproves the prediction
performance by reducing variance at the cost of a small higa®lving

Brigge = argmin ([ly — X33 + X[|B]3) . )

p
where|8]3 = 37 and\ is the penalization constant

i=1

However,/,>-penalization can only shrink the parameters towa@r@snd does not provide
the sparsity required for successful variable selecticpl&ting this penalization term by
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the/;-norm of the parameters leads to the lasso (Tibshirani, )1 898ell-known technique
for variable selection

Biasso= argmin (|ly — XB3 + \[|8]1) , ©)

P

where| 8] = > 18-

j=1

Though the lasso presents good computational propertiéa)si to select groups of
correlated variables. The lasso also estimates only up ¢oefficients, which may be
inconvenient when working in high dimensional spages{(n).

Over the past twenty years, many regularization terms heea proposed. For instance
Frank and Friedman (1993) proposefj anorm based penalization in tBgidgeregression

p
Bhridge = argmin ly — X:B”% + /\Z 18;17 | - (4)
j=1

Lasso and Ridge are both particular cases of this penalizédr ¢ = 1 andq = 2 re-
spectively. Optimizing oveA and more specially is computationally heavy. The bridge
regression only offers variable selection oK 1. Furthermore) < ¢ < 1 gives a non-
convex optimization problem, sin¢g;|? is a non-convex ball. Hence, it is difficult to find
the solution of the regression problem, even for fixed vatfes

More recent works suggest non-convex penalization, usiddferent approach such
asSCADof Fan and Li (2001). The penalty function is singular at thigio to produce
sparsity and is bounded to get unbiased estimates for lajéagents.

However,/; and/, penalization are still used as improved versions of the OdtE e
mates. Zou and Hastie (2005) took advantage of both techsitpuget a reliable way of
handling selection of groups of correlated variables, byluioing /1 and/, regularization
terms, called the elastic net penalty

p p
Ben = argmin | [ly — XB[3 + A > 1851+ XD 18 |- (5)

J=1 J=1

The optimization of two different penalization constartisoigh cross-validation can be
highly time-consuming, but as shown in Zou and Hastie (208&lying the elastic net for
a given value of\; is equivalent to solving the lasso problem. The least arggieesssion
(Efronet al, 2004) is a path algorithm that finds the solution path todsed problem with
computational complexity of a single least squares. Theeefcross-validation is only
required on the quadratic penalization constant By taking a Bayesian perspective we
propose using marginal likelihood maximization to estiengt.

Our proposed model is inspired by a combination of the elastt (Zou and Hastie,
2005) and the generalized lasso (Tibshirani and Taylor1R0OlInstead of penalizing the
parameters, we propose penalizing a linear combinationeoparameters

Been = argmin ([ly — XB[3 + M D181 + A2|D28|3) - (6)

This model collects a wide set of regression problems fdewdiht choices o), andD,.
An {;-penalization to structure the sparsity afdgpenalization to control the correlation
among the linear combination of parameters.
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In some applications, sparsity over a linear combinatiopasémeters is required, such
as the fused-lasso (Tibshiragi al., 2005) in which the penalization is applied on the dif-
ference between consecutive parameters. flpenalization is not always an appropriate
regularization. We suggest to generalize th@enalty by implementing the Mahalanobis
regularization which giveg, penalization as a special case. The choice of the reguariza
tion design matrice®; andD, depends on the context.

2. Generalized Elastic Net

We encourage the Bayesian perspective over the regulanegeession problem. In other
words, we propose to look at the squared residual terms deghaf the likelihood, and
regularization over the parameters as the log of the pratridution assumed for the regres-
sion parameters. This view gives a convenient method famatbn of the regularization
constant. Moreover, motivated by the hierarchical Bayedetimg, if likelihood distribu-
tion is connected to the distribution ¢f| X3, then the regularization term is connected to
the distribution of3 | X and the distribution oX. This view suggests using a penalty that
is a function of the design matriX.

2.1 Tuning ¢, penalization

We propose taking a Bayesian view to the linear regressiobl@m. The least squares
estimates coincide with the maximum likelihood estimateve assume that response vari-
abley is normally distributed around the fitted linear combinatad the covariates;. The
model-based variant will bg | X, 3 ~ N,(Xg3,c%1,), in which V,,(u, ) denotes the
multivariate normal distribution having the mean veqgtoand variance-covariance matrix
3.

Therefore, the Mahalanobis penalty is equivalent to a Gamgsior over the regression
parameterg

B ~ N,(0,7°9), @)

whereQ is the shape of the penalization prior artdis the scale parameter
The maximum posterior estimation gfis equivalent to

. : o? 1
Bune = angain Iy ~ X813 + S 1972813 ) ©

The maximum a posteriori estimation Bf coincides with the generalized ridge esti-
mation if %fv is replaced byx and Q3 is replaced byDs in (8). As both problems are
analytically equivalent, we can use the Empirical Bayesrangp estimate the prior pa-
rameters, here. The empirical Bayes principle maximizes the marginallii@d as a
function of A

2
no X = [ [ oy I XBmEes A= ©)
It is easy to see
_ —1
y | XA~ N, [0,02{In—X<XTX+>\Q_1> 1XT} ] (10)

Since the choice of a penalization is equivalent to a pristrithution on the parameters,
one can select a subjective regularization. For instamdkeie is a knowledge that some
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Table 1: Prior distribution shape® on the parameters and associated quadratic penalties.

Q Penalization
L, 18113
(XTX)™! 1X33
-1
XTX 1 2
(%) LIxa3

(oL, + (1 - a)XTX)™" Bl + (1 - )| XBl3

n

—a -1 —a
(o1, + 1592XTX) ol + LS x B3

variables are inter-correlated, it is more sensible to seaegularization that reflects this
information. This is why we encourage choosifiy= (X'X)~!. This choice ofQ
corresponds to penalization over the fitted values, seeTafdr more details. Table 1 also
presents different covariance matrié®@sand the associated regularizations.

We optimize the likelihood as a function afand 2. Hence, it is possible to make
a more flexible model by introducing another parametefThis parameter is reserved to
discriminate between two possible prior distributions.ttiSg « = 0 corresponds to a
£s-penalization of the fitted values and settimg= 1 corresponds to the ridge regression.

2.2 Tuning ¢; penalization constant

It is feasible to reduce the elastic net problem to the lasgession. Once we are brought
back to the lasso, the path algorithm (Efretral,, 2004) provides the whole solution path.

We apply a similar analogy to reduce the generalized elastigproblem to a gener-
alized lasso problem. The whole solution is provided in fitani and Taylor (2011). It
is not difficult to see the following change in the responsetameand the design matrix
reduces a generalized elastic net regression to a gemerdizso regression

X y
X* = dy* = 11
( - ) andy (Opxl ) (11)

whereQ 3 = D is the quadratic design matrix. In other words,
Iy* = X*83 + MID1Blh = [y — X85 + M |DiBl + Aol DaBI3.  (12)

The generalized elastic net is therefore equivalent to #rexlized lasso for the trans-
formedy* and X*. This allows us to use the computationally efficient patloatgm
presented in Tibshirani and Taylor (2011) to solve the gaizad elastic net problem .

3. Simulation

We set up two separate simulations to verify the behaviowuofproposed method. The
first simulation explores the estimation quality of theegularization constant. The second
simulation aims at showing the behaviour of penalizingdineombinations. We choose a
common choice foD; = Dy = X. This penalization regularizes the fitted values.
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3.1 Estimating theridge parameter

In the first simulation we simulate 30 explanatory variabksch variable independently
sampled fromV (0, 1). We produce: = 450 of such data points and sample the regression
coefficients from\/ (0, 582). We have chosen three different structures?ofThe variance-
covariance structur& ! is I, XX, or a convex combination of these two structures
beingO.2Ip+O.8XTX. Note that we did not consider @npenalization for this simulation
since the aim of the study is to check the efficiency of the webflor estimation of the,
penalizing constant. The errorsare taken independently fro/d(0,0.01).

We used the following log reparametrizatidé , 62) to avoid constrained numerical

optimization procedures. We uséd= log 72 andf, = log {ﬁ}

3.1.1 Penalizing parametef2 = I,

If we choose the indepengent structure, maximum a postamalysis coincides with the
ridge regression withh = Z;. Therefore, the estimation ofcoincides with the estimation

of the inverse of the signal to noise ratio. Fet = 0.01, A = % and it is more
intuitive to check the quality of estimation directly 6n, see Figure 1. Figure 1 (left panel)

illustrates the marginal likelihood curves and the maximmarginal likelihood value for
100 simulations. The true value &f matches the marginal maximum likelihood estimator,
confirming the estimation quality fa2 = I,,.
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Figure 1: Marginal log likelihood curveslog px(y | X) for Q = I,, (left panel) and? =
(X TX)~1! (right panel). The gray curves demonstrate the margindiketihood and black
circles show the maximum marginal log likelihood found b tumerical optimization
routine. The vertical dashed line illustrates the mean efrttaximum likelihood points
while the solid vertical line shows the true value.

We get an estimator dbg(72) by averaging the maxima over a hundred simulations.
This leads to the estimaté = 4.98 within the 95% confidence interval of4.91, 5.06],
which includes the true value used for the simulatioh £ 5).

3.1.2 Penalizing fitted value$2 = (XTX) ™

The behaviour of the marginal likelihood is not much diffgrevith independent structure
Q = I,. In both cases the asymptotic normal confidence intervaldes the true value of
0.
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3.1.3 Mixture penalizatiof? = (oI, + (1 — «) (XTX))_1
The mixture structur€2 = (oI, + (1 —a) (X"X)) ™" does not have an intuitive inter-
pretation. Though, in this settiny estimates the volume of the ball, andestimates the

shape of the ball. Figure 2 shows marginal log likelihoodtoan This figure suggests that
estimation of the voluma is easier than the shape

s
iy
il
Hik
il

Figure 2: Left panel: the marginal log likelihood surface. Right parthe marginal log
likelihood contour.

3.2 Tuningthelasso parameter

The path algorithm allows to find the whole solution path fiffiedent values of\;. Figure 3
shows the trajectories of the fitted values (left panel). \WWseove that the choosing
cannot define much sparsity over the fitted values even widé-t penalization is over
the fitted values. A similar behaviour appears when only egeassion parameter is in the
model, see Figure 4.

Figure 3: The fitted values (left panel) and parameter (right pamajettories while data
are simulated wittB" = (6,6, 6,6, —6, —6, —6, —6).
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Figure 4: The fitted values (left panel) and parameter (right pamajettories while data
are simulated witt8" = (6,0,0,0,0,0,0,0).

4, Conclusion

We proposed a generalization of the elastic net regresSimapplied a combination of
{1 and ¢, penalization on a linear combination of the parametersnddfby two design
matricesD; andD-. Both matrices have a separate and distinct impadD-atakes care
of the correlation appearing between the linear combinatiandD; selects the linear
combinations.

The design matrix for the quadratic penalization is digetitiked to a prior distribu-
tion. This view provides a fast method of estimation for thadratic penalization constant
through the maximum marginal likelihood. The marginal litteod can be successfully
maximized and be used as an alternative to cross-validation

The design matriXD; defines sparsity constraints on the parameters. Solutitinigo
problem is found by the generalized lasso path algorithrbgfiirani and Taylor, 2011).
For a given\; and )\, the path algorithm for the generalized lasso can be usedthzy li
modification on the response vector and the regressionrdesdrix to fit the generalized
elastic net regression.

As a quick example, we applied the generalized elastic mgession to penalize the
fitted values. We surprisingly observed that shrinkage agpaver fitted values by increas-
ing the/, penalizing constant, but not sparsity. It looks that thesipabehaviour of the
lasso penalty over a linear combination of parameters dkpemthe design matrik; that
produces the linear combinations.
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