
Les Cahiers du GERAD ISSN: 0711–2440

Metabolic Data Learning: Forestogram

Using Spike-and-Slab Models

V. Partovi Nia

M. Ghannad-Rezaie

G–2014–18

March 2014
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Abstract: In many applications, such as metabolomics, data are composed of several continuous measure-
ments of subjects (tissues) over multiple variables (metabolites). Measurement values are put in a matrix
with subjects in rows and variables in columns. The analysis of such data requires grouping subjects and
variables to provide a primitive guide toward data modelling. A common approach is to group subjects
and variables separately, and construct a clustering tree once on rows and another time on columns. This
simple approach provides a grouping visualization through two separate trees, which is difficult to interpret
jointly. Another approach is to partition the matrix to provide a joint clustering, but this method looses
the visualization tool being attractive for biologists. We propose a binary tree built on the matrix directly,
thus providing a collection of three-dimensional trees that we call forestogram. We propose a hierarchical
spike-and-slab model to provide a robust clustering in the presence of noise. Furthermore, we suggest an
extension of the model that quantifies discriminant rows and columns. The log posterior is encouraged to
be used as the similarity measure for comparing groupings and building the forestogram. As a consequence,
the biclustering algorithm becomes fully automated. We apply our proposed method on real metabolomic
measurements.

Key Words: Agglomerative clustering, Bayesian clustering, Dendrogram, Metabolic data, Spike-and-slab
model.
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1 Introduction

The scope of this paper is two fold. First, to advertise the advantages of incorporating spike-and-slab models
in matabolomics. Second, to develop an agglomerative method for biclustering. The introduction section,

therefore, is divided into three subsections. In Section 1.1 metabolic analysis is reviewed. Section 1.2 gives

an overview on cluster analysis. We briefly introduce biclustering methods in Section 1.3.

1.1 Metabolic Analysis

Study of metabolism reveals deep underlying connections between the gene expression profile and the cell

physiology (Fiehn et al., 2000). Furthermore, it provides an important tool for the study of metabolic disor-
ders. Metabolic data are frequently collected using analytical chemistry methods, time-of-flight mass spec-

trometry (Vaidyanathan et al., 2001), infra-red spectrometry (Thomas et al., 2000), or gas chromatography-

mass spectrometry (Gohlke and McLafferty, 1993), the latter being one of the low-cost tools. Gas chro-

matography mass spectrometry produce a continuous measurement of metabolic content of a tissue, usually
tissues with different genetic backgrounds, within multiple samples. The information in the metabolic data

could be regarded as a functional signature of physiological status of an organism, which is regulated through

genetic background and environmental clues. Understanding such data can uncover the missing link between

genotype and phenotype in presence of environmental factors. This understanding may help devising new

generations of biomarkers to study biological disorders.

Metabolic datasets are relatively small compared to genetic datasets, but their analysis is still an important

issue. Such studies help to reveal physiological fingerprint of a cell. Physiological patterns have a complex

relationship with the genetic composition of cells. Studying such relationships still is an important challenge

in cell biology with a lot of room for further methodological developments. A careful study of metabolite

patterns helps to understand the metabolism pathway. These pathways clarify the interaction of certain
metabolites with one or several genes. Consequently, a cell with similar genomic background may give

different metabolic response, resulting the heterogeneity in data.

Despite the power of entirely graphical approaches such as looking at projected data on principal compo-

nents axes (Yeung and Ruzzo, 2001), such methods disregard the assumption that a gene or a metabolite may

play different roles. Furthermore, these methods in analysis of multivariate data, are concentrated on cap-
turing the second order dependence between variables. Higher order dependency inherited in the non-linear

nature of metabolic processes cannot be captured using these classical techniques.

Another highly interpretable class of methods applied to metabolic data is clustering. Clustering is a

learning method whereby similar subjects are placed into disjoint groups on the basis of measurement of

several variables. This technique is flexible to capture non-linear patterns (Redestig et al., 2007). A proper
analysis of metabolic data should not require any prior information about the number of clusters since the

prior condition and the significance of conditions to metabolism of the cell is unknown. Traditional clustering

methods, such as hierarchical clustering (Everitt et al., 2011) and the k-means clustering (Hartigan and Wong,

1979), that have been used commonly in these analyses require the number of clusters to be known, in order
to provide a proper grouping. Biologists prefer hierarchical clustering, since a visual tool is produced through

a binary tree, called dendrogram. This tree helps applied researchers to decide what is the proper number of

clusters. A certain grouping is produced by cutting this tree at a specific height. We keep this visualization

tool in our new method. Moreover, our approach helps practitioners further, by providing a reference about

an appropriate height to cut the tree. However, there is a price to pay while we develop a mathematical
reference for the number of clusters. We suppose a statistical model for data and a prior distribution for

cluster configurations. Throughout this section, we argue that a statistical model, e.g. a spike-and-slab

model, works like a distance or a clustering linkage, also chosen implicitly by practitioners in algorithmic

techniques. Algorithmic approaches may or may not produce the same fitting procedure, for a more detailed
discussion about the two views in classification see Boulesteix and Schmid (2014).

Any grid partitioning of a data matrix corresponds to a joint grouping of rows and columns. Partitioning

data vectors was focus of research for many years, but partitioning of a matrix, called biclustering, remained
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unattended until recently. Biclustering has become a topic of more interest due to its modern applications

in metabolomics, proteomics, and genetics (Zhang, 2010). Similar to clustering, most of the biclustering

methods require a prior knowledge about the number of partitions (Lazzeroni and Owen, 2002). We relax
this prior knowledge by taking a Bayesian approach and optimizing the resulting posterior over different

number of partitions. The new method produces an easy-to-understand three-dimensional visualization of

different matrix partitions, we call forestogram. This extended collection of the row and column trees provides

a deeper insight into the clustering process. The classical row dendrogram and the column dendrogram can

be extracted from the resulting forest by projection on rows and columns.

1.2 Clustering Analysis

Grouping, clustering, partitioning, or sometimes called unsupervised learning is a difficult problem, because

search for an optimal data partitioning over the space of all possible groupings is awkward. This space is

discrete, unordered, and have a large cardinality. Therefore, it is difficult to optimize any criterion over

the grouping space. Optimality criterion for a grouping may have different definitions in different contexts.

Briefly, optimality of a grouping is defined using a similarity measure or sometimes called linkage. It is
supposed that data belonging to the same cluster are more similar, or have less distance from each other, on

average. This approach is called average linkage in hierarchical clustering context. We propose a model-based

view, a different approach, but still related to the linkage paradigm.

The basis for suggesting a model for clustering is the following. It appears that if groups with less
average distance are merged, these clusters must have close measures of central tendency or equivalently less

dispersion. More formally, suppose three singleton clusters each being a univariate measurement say y1, y2,

and y3. Merging y1 with y2 is meaningful if these two values are close to each other, i.e. (y1 − y2)
2 is the

smallest distance among the others. This means (y1 − y2)
2 must be smaller than (y1 − y3)

2 and also smaller

than (y2 − y3)
2. Equivalently, this means the variance in the merged cluster

2∑

i=1

(yi − y)2 (1)

must be the smallest, where y = 1

2
(y1 + y2), see Figure 1 (left panel) for the geometrical insight. When more

than two clusters, each with different number of observations is available, the notation requires more indices.
One way to generalize the latter variance (1), is to sum over all observations and clusters. Mathematically,

denote the data in cluster I, by yIi, where I varies between 1 and total number of clusters, say k. If cluster

I include nI objects, the aim is to group the data in a way that the sum of within-cluster variances

k∑

I=1

nI∑

i=1

(yIi − yI)
2 (2)

is minimized, see Figure 1 (right panel).

Applied researchers feel more comfortable in using Euclidean distance instead of adopting a statistical

model. However, as we describe in the following, a model-based view can produce the same clustering
algorithm. Moreover, the model-based approach, helps us answering questions related to statistical issues.

Issues like stability of an estimated grouping, estimating the number of unknown clusters, and ranking or

selecting important clustering rows and columns. In the following we describe the equivalent model-based

method to the average linkage clustering.

Suppose y1 and y2 are in the same cluster. Therefore, they follow the same probabilistic pattern, say
independent Gaussian distribution with unit variance and mean θ. The joint density, then, is

f(y1, y2 | θ) = f(y1 | θ)f(y2 | θ) ∝ exp

{

−
1

2

2∑

i=1

(yi − θ)2
}

. (3)

When θ is unknown, the plug-in principle is applied and the maximum likelihood estimation of θ̂ = y =
1

2
(y1 + y2) replaces θ. It is evident by comparing (3) with (1) that minimizing the within-cluster variance,
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Figure 1: Three clusters of a bivariate data, each cluster is shown with a different symbol and color. The
distance between a pair of clusters is denoted by a straight line. Left panel: three singleton clusters. Right
panel: three clusters each of size five, visualizing the average linkage.

which is argued to be the average linkage clustering, actually mimics maximization of the joint data density

under independent Gaussian assumption.

The generalization for more than one clusters is then straightforward. Assume data belong to the cluster

I are independently distributed according to the Gaussian distribution with mean θI and unit variance.
Suppose clusters are independent, then the joint data density is

f(y | θ) ∝ exp

{

−
1

2

k∑

I=1

nI∑

i=1

(yIi − θI)
2

}

. (4)

The double sum inside the exponent function is the within-variance cluster variance, except the maximum

likelihood estimator θ̂I = yI = 1

nI

∑nI

i=1
yIi replaces the unknown centre θI . It is trivial that maximizing the

plugged-in version of (4) is equivalent to minimizing (2).

Unlike the frequentist approach which aims to find the grouping that maximizes the best possible scenario,

i.e. the maximum likelihood plugged-in joint density, the Bayesian approach optimizes the averaged density.

This averaging requires assuming a prior distribution for the unknown parameter θI , for instance a Gaussian

distribution with mean µ and known variance σ2

θ

yIi | θI
iid
∼ Gaussian(θI , 1)

θI
iid
∼ Gaussian(µ, σ2

θ).

The objective, then, is to find a grouping that maximizes the averaged density

f(y;µ, σ2

θ) ∝
k∏

I=1

∫ ∞

−∞

nI∏

i=1

exp

{

−
1

2
(yIi − θI)

2

}

exp

{

−
1

2σ2

θ

(θI − µ)2
}

dθI

=

k∏

I=1

∫ ∞

−∞

exp

{

−
1

2

nI∑

i=1

(yIi − θI)
2

}

exp

{

−
1

2σ2

θ

(θI − µ)2
}

dθI . (5)

A dendrogram which is the end-product of hierarchical clustering is a tree which organizes clusters. The

traditional method for hierarchical clustering is a bottom-up (agglomerative) or a top-down (divisive) algo-

rithm (Kaufman and Rousseeuw, 1990). Divisive methods start with all data in one cluster and consecutively

divide clusters until ending with each observation as a singleton. Agglomerative methods start with each

observation as a single cluster and successively merge the two closest clusters until one cluster containing
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Figure 2: Dendrogram (left panel) is tree that organizes a collection of vectors. Forestogram (right panel)
organizes a matrix and is composed of collection of row and column trees. A dendrogram can be extracted
from a forestogram through projection on the row or the column side.

all observations is achieved. The nearest clusters are merged based on a given linkage also called similar-
ity/dissimilarity measure. We therefore suggest to replace the linkage with the averaged density to produce

a hierarchical Bayesian algorithm. This allows to take advantage of inferential machinery that supports a

model-based view. We focus on developing an agglomerative partitioning method, but a divisive clustering

algorithm can be constructed as well.

1.3 Biclustering

Biclustering or co-clustering refers to partitioning a matrix. Like clustering, biclustering methods are devided
into distance-based, or model-based methods. Early biclustering was based on a distance, and proposed by

Hartigan (1972). However, after three decades was applied in practice by Cheng and Church (2000) due to

lack of computational power. Model-based techniques can be divided into two categories: (i) the frequentist

approach where the statistical parameters of the model are treated as fixed unknowns like in (4) (Lazzeroni

and Owen, 2002); and (ii) the Bayesian approach where a prior distribution is associated to the model
parameters like in (5) (Gu and Liu, 2008; Zhang, 2010). Indeed most biclustering techniques apply model-

based techniques nowadays, for a comprehensive review see Madeira and Oliveira (2004) and Tanay et al.

(2005). In model-based biclustering, observations in each bicluster are supposed to be drawn independently

from a parametric form (Sheng et al., 2003; Gan et al., 2008; van Uitert et al., 2008; Hochreiter et al., 2010).

The difficulty of biclustering methods, like clustering, is to optimize an objective function over all the
possible submatrices. One way to reduce search space is to search only over the agglomerative path. A visual

bi-product of agglomerative method over a matrix is a collection of binary trees, that we call forestogram,

see Figure 2.

In Section 2 we introduce the notation and a spike-and-slab model for biclustering of continuous data.

In Section 3 we discuss the agglomerative Bayesian biclustering and Bayesian forestogram. Section 4 applies
the suggested method on replicated metabolomics data.

2 Spike-and-Slab Model

Let Yn×p denote the matrix entries, i.e. n subjects measured over p variables. Denote the data clustering by

C, a discrete random variable with probability mass function f(C) and cardinality ||C|| = k, where 1 < k < np
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Figure 3: Visual illustration of grid partitioning of a matrix.

is the number of disjoint clusters. In Bayesian clustering, the data grouping is the parameter of interest to
be estimated from data. Therefore, in this approach, a model is adopted for the data given a grouping,

also called likelihood, and a prior distribution is assumed for grouping. This section focuses on presenting

a useful model when a grouping is given, i.e. f(Y | C). The goal, after, is to optimize the grouping

posterior f(C | Y) ∝ f(Y | C)f(C). This is equivalent to clustering np observations. Optimizing over any
possible grouping of data entries ignores the matrix structure of data. We are particularly interested in

non-overlapping grid clustering of the matrix Y, mainly because grid clustering of a matrix is equivalent

to mutual grouping of rows and columns. As a consequence of this grid restriction, the grouping C now

can be decomposed into row-cluster Crow with ||Crow|| = krow and column-cluster Ccol with ||Ccol|| = kcol,

evidently the number of biclusters k = krowkcol. Suppose that the entries of Y, yIiJj , is univariate, where
I = 1, . . . , krow indexes row-clusters, J = 1, . . . , kcol indexes column-clusters, i = 1, . . . , nI and j = 1, . . . , nJ

denote the ith observation in row-cluster I and jth observation in column-cluster J , see Figure 3. If yIiJj is

a univariate random variable, data are called unreplicated, otherwise are called replicated. The integers nI

and nJ denote the number of observations in row-cluster I and column-cluster J , accordingly.

Hence, the total number of rows n =
∑krow

I=1
nI , and the total number of columns p =

∑kcol

J=1
nJ . If yIJ is

the data in bicluster IJ , the joint density can be written as f(Y | Crow, Ccol) =
∏krow

I=1

∏kcol

J=1
f(yIJ | Crow, Ccol),

in which

f(yIJ | Crow, Ccol) =

∫ ∞

−∞

· · ·

∫ ∞

−∞

nI∏

i=1

nJ∏

j=1

f(yIiJj | ψ, Crow, Ccol)dFψ|Crow,Ccol
, (6)

for some real valued parameter vector ψ. We suggest models with analytically tractable marginals (6) since

its fast evaluation gives two important advantages. First, it is possible to estimate the hyperparameters of

Fψ|Crow,Ccol
through empirical Bayes. Second, we can compare different pair of groups efficiently and build

a binary tree. If the marginal density (6) is intractable an analytical approximation can be used instead.

A very simple parametric model for biclustering continuous data is the Gaussian mean model

yIiJj | θIJ
iid
∼ Gaussian(θIJ , σ

2),

θIJ
iid
∼ Gaussian(µ, σ2

θ),

θIJ ∈ R, σ2, σ2

θ > 0. (7)

The marginal density (6) is tractable, taking ψ = θIJ . The other hyperparameters σ2, σ2

θ , and µ we

consider given at the moment, but we suggest to estimate them using empirical Bayes in practice. Here σ2 is
the variance of biclusters being equal for all submatrices, σ2

θ is the variance of the mean signal that separates

such biclusters, and µ is the centre of data. In other words, µ reflects the data average, and the magnitude of
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the signal to noise ratio σ2

θ/σ
2 reflects the difficulty of the biclustering problem. One may suppose different

bicluster variances through indexing σ2, e.g. σ2

IJ . In order to keep the analytical tractability of (6) we may

assume that σ2

IJ is distributed according to the inverse Gamma law. Smith et al. (2008) show that clustering
with varying cluster variances produce junk clusters using agglomerative method. Therefore, we focus on

models with varying mean, but common variance σ2.

Many high-dimensional applications involve a lot of noise variables. It is more convenient to assume

that data are generated by a mixture of two distributions, one spike distribution that represents the noise

and is concentrated around a constant, often zero, and another distribution with diffuse tails representing
a significant signal (George and McCulloch, 1997). In high-dimensional clustering it is more meaningful to

assume that large chunk of data are noise perhaps because of inclusion of a large number of non-discriminating

variables. We propose to add another hierarchy to the model (7) in order to build a spike-and-slab model

(Mitchell and Beauchamp, 1988) and produce a biclustering method with less sensitivity to noise variables

yIiJj | θIJ
iid
∼ Gaussian(θIJ , σ

2),

θIJ | γIJ
iid
∼ Gaussian(µ, γIJσ

2

θ),

γIJ
iid
∼ Bernoulli(q),

θIJ , µ ∈ R, σ2, σ2

θ > 0, γIJ ∈ {0, 1}, 0 < q < 1. (8)

Note that in (8), Gaussian(µ, 0) denotes a degenerate distribution at µ. Model (8) defines a mixture of

two densities for the cluster centre; one when γIJ = 0, giving a distribution concentrated about µ (spike),

and another when γIJ = 1, giving a distribution with diffuse tails (slab). As a consequence, the marginal

distribution for data is mixture of Gaussian(µ, σ2) and Gaussian(µ, σ2 + σ2

θ). Model (8) is a spike-and-slab

model at µ. If the average of data is subtracted µ = 0 it reduces to a spike-and-slab model at zero. Still the
marginal density (6) is tractable by taking ψ = (θIJ , γIJ), see Appendix for calculations. Noise biclusters are

submatrices with γIJ = 0. Therefore, using the spike-and-slab model (8) one can judge about the important

biclusters through the Bayes factor of γIJ = 1 versus γIJ = 0. Though in real applications discovering noise

variables (columns) and noise subjects (rows) is more of interest.

We propose to use (8) with slight modification for row or column noise detection

yIiJj | θIJ
iid
∼ Gaussian(θIJ , σ

2),

θIJ | γIJ
iid
∼ Gaussian(µ, γIJσ

2

θ),

γIJ | δIi, δJj
iid
∼ Bernoulli(δIiδJjq),

δIi
iid
∼ Bernoulli(0.5),

δJj
iid
∼ Bernoulli(0.5),

θIJ , µ ∈ R, σ2, σ2

θ > 0, γIJ , δIi, δJj ∈ {0, 1}, 0 < q < 1. (9)

The row i of the row-cluster I separates columns only if δIi = 1. Similarly, column j of column-cluster J
partitions the rows only if δJj = 1. Therefore, the Bayes factor of δIi = 1 versus δIi = 0 can be used to judge

about discriminant rows. Likewise, the Bayes factor of δJj = 1 versus δJj = 0 gives a clue about discriminant

columns. We propose a Bernoulli distribution with succes probability 0.5 for both indicator variables. Often,

there is no information apriori about the proportion of active rows, or active columns, so a fair choice looks

reasonable. On the other hand, we found that estimating these values through maximizing the marginal
likelihood is numerically inefficient.

In many metabolomic studies data are replicated, i.e. the same tissue is analyzed several times. Therefore,

a generalization of (9) is required to account for subject replication.

Let RIi denote replications of subject i in row-cluster I. In unreplicated case RIi = 1, ∀i, I. The total

number of samples, i.e. the number of rows of Y, is n =
∑krow

I=1

∑nI

i=1
RIi. A straightforward generalization

of (9) is
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yIiJjr | εIiJj
iid
∼ Gaussian(εIiJj , σ

2),

εIiJj | θIJ
iid
∼ Gaussian(θIJ , σ

2

ε ),

θIJ | γIJ
iid
∼ Gaussian(µ, γIJσ

2

θ),

γIJ | δIi, δJj
iid
∼ Bernoulli(δIiδJjq),

δIi
iid
∼ Bernoulli(0.5),

δJj
iid
∼ Bernoulli(0.5),

θIJ , µ ∈ R, σ2, σ2

θ > 0, γIJ , δIi, δJj ∈ {0, 1}, 0 < q < 1. (10)

The extra level of variation εIiJj mimics the variation between mean of replicated data of size RIi both
generated with the same center. One may run the unreplicated model (9) on the average of replicated tissues

instead, but this approach ignores the uncertainty of this average and treats the averaged tissues as a single

realization. This issue might be crucial if replications are unequal. The model (10) takes each variable as a

column-clustering object but a block of rows as a row-clustering object. The marginal posterior derived from

(10) is calculated in the Appendix.

3 Agglomerative Biclustering

In Bayesian clustering a prior distribution is assumed for grouping, and a likelihood is supposed for the data

given grouping. Bayesian agglomerative method uses the log posterior as the natural similarity measure to

build the binary tree. Consider the row-cluster Crow is defined over n rows, with ||Crow|| = krow being the

number of blocks of the row-cluster. Similarly suppose the column-cluster Ccol is defined over p columns, with
||Ccol|| = kcol being the number of blocks of the column-cluster. We assume groupings are exchangeable a

priori , and hence only need to specify a prior distribution for the number of blocks in the partition, and the

sizes of the blocks, see Booth et al. (2008) for discussion. Heard et al. (2006) suggest a uniform discrete prior

for the number of distinct clusters, and the uniform Multinomial-Dirichlet prior for the cluster sizes given the
number of groups. This clustering prior favours small number of clusters and is fast to evaluate. Further we

suppose that row-clusters and column-clusters are independent apriori, hence f(Crow, Ccol) = f(Crow)f(Ccol).
Following Heard et al. (2006)

f(Crow) ∝
(krow − 1)

∏krow

I=1
(nI !)

n(n+ krow − 1)!
, f(Ccol) ∝

(kcol − 1)
∏kcol

J=1
(nJ !)

p(p+ kcol − 1)!
. (11)

Initially every matrix entry is regarded as a separate bicluster, so the initial row-cluster has krow = n blocks

and the initial column-cluster has kcol = p blocks. At each stage, every possible merger of pair of row blocks

and pair of column blocks is considered, and the merger that maximizes the posterior is applied, either a row

merger or a column merger. This gives a symmetric algorithm with respect to the rows and the columns, i.e.
the same result is produced over the transpose of the data matrix.

The posterior function typically includes some hyperparameters. We suggest to estimate these hyperpa-

rameters using empirical Bayes at the earliest stage of the agglomerative algorithm, providing an automatic

choice of hyperparameters.

Assuming the uniform Multinomial-Dirichlet clustering prior (11), given a grouping of variables Ccol, the
ratio of posteriors for merging subject block I with block I ′ is

f(CI,I′

row
, Ccol | Y)

f(Crow, Ccol | Y)
=

f(yI,I′

row
| Ccol)

f(yI
row

| Ccol)f(yI′

row
| Ccol)

×
(n+ krow − 1)(nI + nI′)!

(krow − 1)nI !nI′ !
, (12)

where CI,I′

row is the row grouping after merging row block I with row block I ′, yI,I′

row is the data in row block I
and I ′, yI

row
is the data in row block I and yI′

row
is the data in row block I ′, and nI and nI′ are the number

of subjects in row block I and I ′, respectively. Similarly, the ratio of posteriors given a fixed grouping of
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subjects Crow for merging column blocks J with J ′ is

f(Crow, C
J,J′

col
| Y)

f(Crow, Ccol | Y)
=

f(yJ,J′

col
| Crow)

f(yJ
col

| Crow)f(yJ′

col
| Crow)

×
(p+ kcol − 1)(nJ + nJ′)!

(kcol − 1)nJ !nJ′ !
. (13)

Here Crow and Ccol are the row and the column groupings in the previous step of the agglomerative algorithm.

Merging the clusters continues until a single block containing all rows and columns is achieved. The absolute

logarithm of the posterior ratio produces the length of the arms of the binary tree. This length corresponds
to the log Bayes factor for comparing two successive groupings. Having the log Bayes factor as the arms of

the tree provides immediate and statistically-sensible comparison of different groupings, directly on the tree.

The corresponding pseudo code for this algorithm is

1. Initialize ||Crow|| = krow = n, ||Ccol|| = kcol = p; this initialization means Crow and Ccol are both

collection of singleton clusters. Set the model hyperparameters to some values or estimate them using
empirical Bayes.

2. Compute Cmax
row = argmaxI,I′f(CI,I′

row , Ccol | Y) and Cmax

col
= argmaxJ,J′f(Crow, C

J,J′

col
| Y).

3. If f(Cmax
row

, Ccol | Y) > f(Crow, Cmax

col
| Y), merge the best two row blocks Cmax

row
, otherwise merge the best

two column blocks Cmax

col
.

4. Stop if krow = 1 and kcol = 1, otherwise return to 2.

The posterior f(Crow, Ccol | Y) maximizes for some (Crow, Ccol) on this agglomerative path, providing

the best biclustering in the posterior sense on this path; see the top panel of Figure 6. Estimating hyper-

parameters through empirical Bayes and choosing the cutting point by maximum a posteriori principle on

the agglomerative path provides a fully automatic biclustering aglorithm. Despite the well-posed statistical

properties of this approach, we still keep the visual guide for other possible grouping, through forestogram.

4 Data Analysis

The metabolomic data set (Messerli et al., 2007) consists of 14 genetic mutants of Arabidopsis thaliana

measured over 43 metabolites. The measurements were obtained through gas chromatography mass spec-

trometry, with three replicates for one of the mutants, ColWT, and four replicates for the rest. These mutant

strains are described as follows: two mutants are defective in starch biosynthesis (pgm and isa2 ); four are
defective in starch degradation (sex1, sex4, mex1 and dpe2 )–a comparative mutant accumulates starch as

a pleiotropic effect (tpt)–four are uncharacterized mutants (deg172, deg263, ke103 and sex3 ); and finally,

three are wild-type plants (WsWT, RLDWT, and ColWT ). The idea was to regroup the mutants and indi-

cate what avenues should be explored first when seeking to characterize the plants. Simultaneously, it is of
interest to discover which metabolites have a similar functionality over these samples, and which plants are

informative to discover such functionality. The logarithm of spectra of the raw data were first preprocessed,

a subset of 43 reliably detected metabolites has been selected from the many measured metabolites. We

apply our developed method on the preprocessed data to figure out which replicated tissues are similar and

which metabolites have a similar pattern over the samples. Our spike-and-slab model, further, finds out noise
subjects and metabolites.

Figure 4 shows the forestogram using model (10) while hyperparameters are estimated at the first stage of

hierarchical clustering, t.e. treating each data entry as a separate block. The estimated hyperparameters and

their standard errors are µ̂ = 0.083(0.028), σ̂2 = 0.159(0.005), σ̂ε
2 = 0.373(0.032), σ̂θ

2 = 5.155(2.773), and

q̂ = 0.034(0.019). Figure 5 shows the projected forestogram, estimated bicluster, important metabolites, and
important plants. The projected tree of the forest helps to study the row and the column trees marginally. A

finer understanding of relation between these two marginal trees is inherent in the forestogram of Figure 4.

The agglomerative log posterior is shown in Figure 6 top panel. The projected path of the top panel on

row and column sides is illustrated in the middle panel. The importance of variables and subjects quantified

through the Bayes factor is reported in the bottom panel; bottom left panel shows the row log Bayes factor
δIi = 1 versus δIi = 0, and the bottom right panel shows the column log Bayes factor δJj = 1 versus δJj = 0.
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Figure 4: Forestogram demonstrated over the image plot of the metabolic data. The projection of the forest
over the row and the column sides is demonstrated in Figure 5. More details about the construction of this
forest is visualized in Figure 6.

5 Discussion

We introduced a fully automatic hierarchical biclustering using a suitable spike-and-slab model with tractable

marginals for metabolic data. The model allows to incorporate data replication and identifies noise tissues and

metabolites. Grouping with a tractable log posterior provides a visualization facility through forestogram.
Some other Bayesian models allow several choices for the distribution of centers with tractable marginals;

for instance, in model (8) an asymmetric Laplace distribution for θIJ (Bhowmick et al., 2006) also produces

tractable marginals and hence provides another similarity measure for biclustering. Biclustering other types

of data such as discrete data is feasible using the introduced approach through other marginally tractable

models, e.g. conjugate models. Grouping with log posterior as the similarity measure provides a visualization
facility through forestogram. In this work we focused on parametric models, but conjugate Dirichlet mixtures

also can be used for a similar analysis (Savage et al., 2009).
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Figure 5: Projected forestogram of Figure 4 over row and column sides. Important metabolites and plants
shown on the margin of the image plot of the metabolomic data. The forestogram is cut at the maximum
a posteriori grouping over the agglomerative path and the estimated grouping is shown at the opposite side
of each marginal dendrogram. Metabolite and plant importance is calculated for the maximum a posteriori
grouping using model (10), a heat color is shown for an important metabolite or plant, and blank otherwise,
see also Figure 6.

Forestogram is a connection between biclustering and three-dimensional binary tree. This approach is

different with running hierarchical clustering on rows and columns separately. The introduced method is

computationally more expensive, but visually finer, and statistically more interpretable. While posterior is
used as the arms of the tree, the arms of the forestogram have a probabilistic interpretation, since the length

of each arm corresponds to a log Bayes factor. This facilitates the comparison of different groupings directly

on the forestogram if needed. However, visualization through forestogram is infeasible for large matrices

since a trivial implementation of the suggested algorithm is of O(n3p3) apart from the one time optimization
needed for estimation of hyperparameters. If the postrior has Lance–Williams property (Lance and Williams,

1967) the computation can be improved to O(n2p2 logn log p).

Importance values for ordering effective variable and subjects can be evaluated rapidly once a sensible

grouping is given. If one is interested only in disjoint grid biclustering but not the three-dimensional tree,

Markov chain Monte Carlo methods can be used. Adopting Markov chain Monte Carlo sampling enables aver-
aging the variable and subject importance over sampled groupings. In our suggested method the importance

is calculated only based on one grouping: the maximum a posteriori grouping found on the agglomerative

path. Posterior computations and biclustering calculations for this research has been implemented in R sta-

tistical software (R Core Team, 2014). The R package baybi is under development on R-Forge and will be

released on R-CRAN in the near future. The forestogram graph has been implemented in MATLAB (2014).
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Figure 6: Top: agglomerative log posterior values over the agglomerative path for the metabolomic data
shown on the number of metabolite clusters (kcol) and the number of plant clusters (krow). Middle: the
projected log posterior path of the top panel, for plants (left panel), and for metabolites (right panel). The
horizontal dashed line refers to the maximum a posteriori cutting point on the log posterior path of the top
panel and the vertical solid line to the optimal number of groups of plants (left panel) and metabolites (right
panel). Bottom: the log Bayes factor as the importance measure for plants (left panel) and for metabolites
(right panel); a heat color (important) if the log Bayes factor is positive and blank (unimportant) otherwise,
see also Figure 5.
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Appendix

In this section the marginal density for a given row-cluster Crow and column-cluster Ccol, f(. | Crow, Ccol), is
denoted by f(.) for the sake of simplicity in notation. In building the tree we suppose δIi = 1 and δJj = 1.
These parameters are only useful for testing noise rows or columns after a forestogram is built.

The marginal density for the model (10) is simply a random effect model with disappearing random

component θIJ whose appearance is controlled by the Bernoulli random variable γIJ . We marginalize first

over γIJ ,

f(Y) =

krow∏

I=1

kcol∏

J=1

{qf(yIJ | γIJ = 1) + (1 − q)f(yIJ | γIJ = 0)}. (14)

The density for a given γIJ = 0 is

f(yIJ | γIJ = 0) =

nJ∏

j=1

nI∏

i=1

∫ ∞

−∞

RIi∏

r=1

f(yIiJjr | εIiJj)f(εIiJj | γIJ = 0)dεIiJj , (15)

in which f(yIiJjr | εIiJj) = (2πσ2)−1/2 exp
{
− 1

2σ2 (yIiJjr − εIiJj)
2
}
, and f(εIiJj | γIJ = 0) = (2πσε)

−1/2

exp{− 1

2σ2
ε

(εIiJj − µ)2}. After making (15) a complete square in terms of εIiJj ,

f(yIJ | γIJ = 0) =

nI∏

i=1

nJ∏

j=1

(2π)−RIi/2σ1−RIi(RIiσ
2

ε + σ2)−1/2

× exp

{

−
1

2σ2

(
RIi∑

r=1

y2IiJjr −RIiyIiJj

)

−
(yIiJj − µ)2

2(σ2
ε + σ2/RIi)

}

, (16)

in which yIiJj = R−1

Ii

∑RIi

r=1
yIiJjr .

The density f(yIJ | γIJ = 1) corresponds to the hierarchical model

yIiJjr | εIiJj
iid
∼ Gaussian(εIiJj , σ

2),

εIiJj | θIJ
iid
∼ Gaussian(θIJ , σ

2

ε),

θIJ
iid
∼ Gaussian(µ, σ2

θ),

εIiJj , θIJ , µ ∈ R, σ2, σ2

ε , σ
2

θ > 0. (17)

Evaluation of f(yIJ | γIJ = 1) is straightforward using the standard mixed effect model matrix notation.

Suppose an appropriate design matrix Z with
∑nI

i=1
RIi + nJ rows and nI + nJ columns and vector ε is a

vector of length nI + nJ with entries εIiJj . One may re-write the hierarchical model (17) as

yIJ | ε ∼ N (µ + Zε, σ2I),

ε ∼ N (0,W),

in which N denotes the multivariate Gaussian distribution, I is the identity matrix, and W is an (nI +nJ)×
(nI + nJ) uniform matrix with main diagonals σ2

ε + σ2

θ and off-diagonals σ2

θ obtained after integration over

a univariate θIJ . Using standard mixed effect calculations we have

yIJ ∼ N (µ1,Σ), (18)

where 1 denotes the unit vector and the covariance matrix Σ = σ2I + ZWZ′. The covariance matrix Σ

corresponds to an (nJ +
∑nI

i=1
RIi)× (nJ +

∑nI

i=1
RIi) symmetric matrix with main diagonals σ2 + σ2

ε + σ2

θ

and off-diagonals σ2
ε + σ2

θ or σ2

θ .
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