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du Fonds de recherche du Québec – Nature et technologies.
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Abstract: While there has been a surge of articles on convergence diagnostic tools for MCMC on continuous
stationary distributions and ordinal state spaces, Bayesian clustering has spawned demands for tools designed
specifically for nominal finite state spaces — grouping space. To fill this gap we propose a simple quantitative
convergence criterion for MCMC algorithms run on nominal state spaces that has an intuitive interpretation
which is a one-dimensional goodness-of-fit statistic. We study the asymptotic behaviour of the statistic
and estimate its variance using the regenerative simulation. The convergence assessment is performed via a
formal statistical significance test. We study the performance of the proposed criterion via simulation. We
finally consider the particular application of clustering of genetic mutants of the flowering plant Arabidopsis
thaliana.
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1 Introduction

Clustering may be described as the partitioning of data into homogeneous groups. Classical clustering

techniques employ a measure of dissimilarity and optimize a criterion in order to determine the allocation

of data to different groups (Hartigan, 1975). Modern approaches are based on probabilistic models where
homogeneous groups of data follow the same distribution (Murua et al., 2008; Everitt et al., 2011). From

a statistical modelling viewpoint, clustering may be regarded as fitting a mixture model with an unknown

number of components. When the number of clusters is fixed, a maximum likelihood approach via the EM

algorithm is commonly adopted to allocate observations. Asymptotic model selection criteria such as AIC or

BIC are commonly used in practice to choose the number of clusters (Fraley and Raftery, 2002). Bayesian
clustering is considered as an alternative to mixture modelling. In Bayesian clustering a prior distribution is

assumed on parameters and on groupings (Heard et al., 2006).

The goal of hierarchical Bayesian clustering is to find the maximum a posteriori (MAP) allocation of

data using agglomerative or divisive algorithms. Alternatively, approximate sampling from the posterior

distribution of allocations is performed via MCMC algorithms (Liu, 2001; Robert and Casella, 2004). Often
these samples are used for consensus clustering representation. However, the cardinality of the space of

groupings renders MCMC sampling very challenging, even for a small number of observations. More precisely,

let s(T,C) denote the Stirling number of the second kind, i.e., the number of ways that T observations can

be classified into C non-empty clusters. Then, the number of possible groupings of T observations is given
by B(T ) =

∑T
C=1 s(T,C), called the Bell number. This number grows rapidly with T , but not faster than

the factorial of T . Even for moderately sized data sets, the Bell number is enormous, for instance in our

application with only T = 14 genetic mutants, B(14) ≈ 1.9× 108, and for T = 100, B(100) ≈ 4.8× 10115.

We discuss Bayesian hierarchical clustering with an unknown number of clusters C, under the assumption

that the marginal posterior distributions of groupings are available up to a normalizing constant, i.e., all model
parameters can be integrated out. This assumption reduces the posterior state space to that of groupings,

so an MCMC algorithm such as Metropolis-Hastings or Gibbs sampling may be implemented only on the

space of groupings. In particular, unlike common Bayesian clustering approaches, there is no need to apply a

trans-dimensional MCMC algorithm, such as the reversible jump MCMC algorithm of Green (1995) when the

marginal densities have analytically closed forms. The reversible jump algorithm allows the MCMC sampler
to traverse parameter subspaces of varying dimensionality. When all model parameters are integrated out,

the parameter space is the space of groupings, and it is of fixed dimension with cardinality equal to the Bell

number.

Whereas MCMC convergence diagnostic tools have been studied extensively for continuous stationary

distributions (Cowles and Carlin, 1996), Bayesian clustering has spawned demands for tools designed specif-
ically for nominal state spaces. To the best of our knowledge, the only quantitative technique well suited

for this purpose is Zellner and Min (1995), which requires the availability of full conditional distributions, so

it is not generally applicable, for instance, in the Metropolis-Hastings algorithm. Brooks et al. (2003) have

proposed nonparameteric convergence diagnostic tests for Bayesian clustering based on Kolmogrov-Smirnov
and Pearson statistics. They assume nearly independent data after subsampling. However, concerns exist in

estimating the empirical average after subsampling (Geyer, 1992; MacEachern and Berliner, 1994). Further-

more, the asymptotic theory for the Kolomgrov-Smirov and the Pearson tests are established only for the

i.i.d. sampling scheme.

We introduce a convergence diagnostic criterion that compares the empirical probability mass function
(pmf) to the posterior pmf on groupings unlike the methods developed for ordinal variables that check the

convergence implicitly in terms of the moments. Such implicit convergence assessments can be misleading,

since they only test stability of some moments. As discussed in Section ??, it is easy to construct examples

where moments stabilize, possibly around a wrong value, long before the empirical pmf concentrates around

the true posterior pmf of groupings. Our criterion is applicable to an irreducible, aperiodic Markov chain
defined on a finite state space (Roberts and Rosenthal, 2004). This implies that the Markov chain can be

the output of a more general class of MCMC sampling algorithms, including the Gibbs sampler.
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In Bayesian clustering, the higher the posterior is for a grouping, the more that grouping is weighted
in the consensus clustering diagram. So it is important to check the convergence of the chain at least on

groupings with high posterior pmf. We test convergence to equilibrium through the ratio of the empirical pmf

to the true pmf known up to a normalizing constant. Averaged over states under consideration, this gives

an intuitive, variance-like, one-dimensional goodness-of-fit statistic. Using the Markov chain Central Limit
Theorem (CLT) (Jones, 2004; Galin, 2004), we derive the asymptotic distribution of this variance statistic.

Under the hypothesis of stationarity, we expect this statistic to be small, so we propose to reject the null

hypothesis for large values. In practice, we estimate the asymptotic variance by regenerative simulation

(Mykland et al. (1995); Hobert et al. (2002)).

Regenerative simulation is one of a number of specialized techniques, including overlapping batch means
and spectral variance methods (Flegal and Jones, 2010), for consistent estimation of the variance of a statistic

in a Markov chain. Jones et al. (2006) employ this technique for MCMC convergence diagnostics. They form

an asymptotic confidence interval for the expectation of a given function of interest, e.g., the posterior mean,

and propose to continue the MCMC simulation process until the length of the half-width interval falls below

a pre-specified threshold. In this way, convergence of the empirical mean is assessed, and convergence to
the equilibrium distribution is only implicitly tested in terms of the specified moment of the chain. As the

moment of the chain is the target of convergence, their method is not applicable for nominal state spaces. In

contrast, our significance test aims to assess lack of convergence to the equilibrium distribution directly.

This paper is organized as follows. Section 2 introduces Bayesian clustering and the challenges of MCMC

sampling from the posterior distribution on groupings. In Section 3 we define our test statistic and derive
its asymptotic distribution. We implement our convergence criterion for Gibbs and split-merge Metropolis-

Hastings (MH) sampling algorithms in Section 4, with application to clustering genetic mutants of the

flowering plant Arabidopsis thaliana.

2 Bayesian clustering

In Bayesian clustering, each observation has a corresponding unknown grouping parameter which assigns it
to a specific cluster. Let y = {yt}Tt=1 represent the observations and c = {ct}Tt=1 the unknown grouping

parameters called labels, i.e., ct = c ∈ {1, . . . , C} if yt is allocated to cluster c. In order to impose uniqueness

in cluster labeling, we assume that the grouping parameters are in increasing order. The first observation,

y1, always has label 1; the second observation has label 1 if it belongs to the same group as y1; otherwise, it
has label 2, and so forth. Furthermore, we assume that there are no empty clusters. The likelihood function

is given by

π(y | θ, c) =
C
∏

c=1

∏

{t;ct=c}

π(yt | θ, c),

where θ is the unknown model parameter, possibly multi-dimensional. We assume that, conditional on c and

the model parameters, the observations are independent within and across clusters called partition model

(Hartigan, 1990). Since the goal is to estimate the grouping parameter c, the ideal scenario involves fitting a
model with closed-form marginal posterior distributions (Heller and Ghahramani, 2005; Heard et al., 2006).

In other words, the model parameters are integrated out with respect to their prior distribution given c:

π(y | c) =
∫







C
∏

c=1

∏

{t;ct=c}

π(yt | θ, c)







π(θ | c)dθ. (1)

The state space of interest is that of all possible allocations under the posterior distribution π(c | y) ∝
π(y | c)π(c), where π(c) is the prior distribution on allocations. The Rao-Blackwellization of Equation (1)

reduces the variance of MCMC-based estimators and facilitates the exploration of π(c | y) by the MCMC

algorithm. Current literature offers several choices for the prior distribution π(c | y) (McCullagh and Yang,
2006; Heard et al., 2006; Booth et al., 2008). We assess the sensitivity of the posterior distribution to the

choice of π(c) by introducing a clustering prior sensitivity parameter ξ; denote the posterior distribution by
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πξ(c | y) ∝ π(y | c) {π(c)}ξ, 0 ≤ ξ ≤ 1. The sensitivity parameter ξ ranges from 0 to 1, defining a class of
distributions with priors evolving from the uniform distribution to the prior of interest π(c).

3 Convergence criterion

Let {Xt}t≥1 be an irreducible, aperiodic Markov chain with discrete state space SM of cardinality M .

Following the Bayesian clustering context, Xt represents a grouping. The value of Xt is an integer that

hypothetically refers to a distinct grouping. Therefore a state and a grouping are interchangeable words,
with cardinality M being equal to the Bell number.

Let P = {Pi,j}Mi,j=1 denote the transition probability matrix. By the Ergodic theorem (Meyn and Tweedie,

1993), there exists a unique stationary distribution Π = {Πi, i ∈ SM}′, such that PΠ = Π, satisfying

Πj = limk→∞ P
(k)
i,j , ∀i, j ∈ SM , where P

(k)
i,j is the transition probability from state i to state j in k steps.

In practice, we have a finite length ergodic Markov chain X = {Xt, t = 1, . . . , n} that may not visit all

possible states M , i.e. visits only m ≤ min(n,M) distinct states. The chain Xt is the result of an MCMC

sampling algorithm run on groupings, such as split-merge Metropolis-Hastings (MH) or Gibbs sampling over

n iterations. In the sequel, we assume that m is constant, and we comment on relaxing this assumption in

Section 6. In other words, we assume that the region of the state space not visited after n iterations has
negligible posterior probability. We later provide a lower bound of the number of iterations n to observe high

mass states. (Section 3.3) Denote the state space of this Markov chain by Sm,n. Furthermore, suppose that

Πi is known only up to a normalizing constant Z; this suffices to implement the MH algorithm. Denote

Πi =
πi

Z
∀i ∈ SM ,

where Z =
∑M

i=1 πi > 0. We assume that the state space SM is prohibitively large that enumerating all

states to compute the normalizing constant is computationally infeasible.

In the sequel, we define the test statistic Vn and derive its asymptotic distribution. The asymptotic
variance can be consistently estimated using regenerative simulation under moment conditions that are

relatively easy to verify.

The method of regenerative simulation identifies random times at which the Markov chain probabilistically

restarts itself, by constructing a split chain X̃ = {(X̃1, δ1), (X̃2, δ2), . . .} on space SM × {0, 1}, such that if

δi = 1, then i + 1 is a regeneration time. The construction of X̃ is based on the following minorisation
condition: find a function h : SM 7→ [0, 1] for which EΠh =

∑

i∈SM
h(i)Πi > 0 and a probability measure Q

such that, for all x ∈ SM and all measurable sets A,

P(x,A) ≥ h(x)Q(A). (2)

Since SM is countable, Equation (2) is satisfied by h(x) = I(x = i), for a fixed state i ∈ SM where I is the

indicator function, and Q(·) = P(i, ·). Generating the split chain is simple: X̃t = Xt and δt = I(Xt = i)
(Hobert et al. 2002). Assuming that X is initialized with X1 ∼ P(i, ·), then the chain probabilistically restarts

itself at times τ0 = 1, τ1 > τ0, . . . defined by τr+1 = min{t > τr : δt−1 = 1}, r ≥ 0, i.e., these correspond

to the events Xτr+1−1 = i when the chain returns to i. Constructing the split chain does not assume that

the Markov chain is stationary; the only requirement is that X1 ∼ Q. Let nr = τr − τr−1, r ≥ 1 denote the
length of the rth regeneration tour, and let R(n) be the total number of tours in a chain of length n. For

simplicity of notation, suppress the dependence on the number of iterations n and denote R(n) by R. Since

the Markov chain is aperiodic, it follows that R → ∞ as n → ∞.

Let g be a real-valued, Π-integrable function on SM . The Ergodic Theorem implies that

ḡτR =
1

τR − 1

τR−1
∑

t=1

g(Xt) → EΠg =
∑

i∈SM

g(i)Πi
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with probability 1 as R → ∞. Note that τR is the start of the (R + 1)st regeneration tour, hence the limits
of the summation. In the sequel, the subscript Π indicates that the distribution in question is the stationary

distribution Π. Furthermore, Hobert et al. (2002) show that, under the assumption that the minorisation

condition holds, if X is geometrically ergodic and EΠ|g|2+ǫ < ∞ for some ǫ > 0, then the following CLT

result is true: √
R (ḡτR − EΠg)

D−→ Normal1(0, σ
2
g) as R → ∞, (3)

where σ2
g < ∞, and Normald denotes the d-variate normal distribution. Moreover, a consistent estimator of

σ2
g exists (Jones et al., 2006). Hobert et al. (2002) explain that the asymptotic variance σ2

g is related to the

familiar Markov chain CLT result of Chan and Geyer (1994)

√
τR − 1 (ḡτR − EΠg)

D−→ Normal1(0, γ
2
g) as τR → ∞, (4)

where γ2
g = varΠ {g(X1)} + 2

∑∞
k=2 covΠ {g(X1), g(Xk)} < ∞, by σ2

g = γ2
gEΠh. In our case, this gives

σ2
g = γ2

gΠi.

3.1 Test statistic

The empirical estimator

π̂i = (τR − 1)−1
τR−1
∑

t=1

I(Xt = i),

is consistent as R → ∞ by the Ergodic theorem. Recall that Πi is the posterior mass at state i (often

unobservable) and πi is the posterior mass up to the normalizing constant Z; recall that πi is used in

calculation of the acceptance probability of the Metropolis-Hasting sampler, so it is available. As a result,

for R large, we expect the ratio fi = π̂i/πi to be approximately equal to Z−1, for all i ∈ Sm,n. The intuition
is that, under equilibrium, the ratios fi are approximately constant; hence, we suggest using their variance

to assess convergence to stationarity. Define the variance test statistic

Vn =
R

m

∑

i∈Sm,n

(

fi − f
)2

, (5)

where f = m−1
∑

j∈Sm,n
fj .

Remark 3.1 For R large, we have the approximation

Vn ≈ R

m

∑

i∈Sm,n

(fi − Z−1)2 =
R

m

1

Z2

∑

i∈Sm,n

(Oi − Ei)
2

E2
i

,

where Oi = nπ̂i is the observed number of visits to state i, and Ei = nΠi is the expected number of visits

under the stationary distribution. Therefore, Vn somehow mimics the Pearson goodness-of-fit statistic, but
with denominator E2

i . This means that distances corresponding to states that have low probability Πi are

more heavily weighted.

Remark 3.2 The stabilizing coefficient R/m is required to avoid obtaining an asymptotically degenerate dis-

tribution for Vn as R → ∞. The numerator R comes from the stabilizing rate for π̂i of order R
1
2 in Equation

(3), and the denominator m gives an intuitive interpretation of Vn as the variance of the ratios fi.

First, we simplify the expression of Vn as follows.

Vn =
R

m

∑

i∈Sm,n

(

fi −
1

m
fi −

1

m

∑

j∈Sm,n

j 6=i

fj

)2

=
R

m

∑

i∈Sm,n

(a′if)
2

=
R

m
(Af)′(Af),
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with the following notation: f = (f1, . . . , fm)′, for i ∈ Sm,n, ai = ei − m−11m, where e1, . . . , em are the
standard basis vectors of Rm and 1m is a column vector of 1s of length m, and A is the m×m symmetric

matrix with ith row equal to a′i and A′ is the transpose of A. Moreover, we notice that for all i ∈ Sm,n,

(

f − Z−11m

)′
ai =

(

1− 1

m

)

π̂i −Πi

πi

− 1

m

∑

j∈Sm,n

j 6=i

π̂j −Πj

πj

= fi − f.

This result gives the useful representation Vn = (Cwn)
′(Cwn), where wn = (w1,n, . . . , wm,n)

′, with wi,n =√
R(π̂i −Πi), and C is the m×m symmetric matrix defined by

C = A× diag
{

(
√
mπi)

−1
}

.

Theorem 3.1 presents the asymptotic distribution of Vn as R → ∞. See the Appendix for proof.

Theorem 3.1 For an irreducible, aperiodic, discrete state space Markov chain with equilibrium distribution
Π,

Cwn
D−→ Normalm(0,CΣC′) as R → ∞,

for m fixed, where Σ is the asymptotic variance-covariance matrix of wn. Consequently,

Vn = (Cwn)
′(Cwn)

D−→
m
∑

i=1

λiZ
2
i ,

where λ1, . . . , λm are the eigenvalues of the matrix CΣC′, and Zi
iid∼ Normal1(0, 1), i = 1, . . . ,m.

3.2 Implementation

In consensus clustering high mass states play a major role in the depiction of the consensus graph, so we

restrict our attention to k high mass states. These states are, approximately, the highest posterior states.

Below we describe regenerative sampling. This method helps to estimate the variance-covariance matrix Σ

consistently. As a note of caution, the performance of regenerative simulation suffers when the state space

explored is large. Therefore, we suggest that all the remaining states be merged and renamed as the new
state k+1. We propose a hypothesis test for convergence at confidence level (1−α), for a fixed α. We assume

that the number of regeneration tours R is large enough for the distribution of Vn to be well approximated by

that of
∑k+1

i=1 λiZ
2
i . The eigenvalues λi are unknown, but they can be estimated by λ̂i, the eigenvalues of the

estimator Σ̂ of Σ. Each entry in Σ̂ is a consistent estimator obtained by regenerative simulation (Mykland

et al. (1995); Hobert et al. (2002)). Details appear in the Appendix.

1. Set t = n.

2. Run the MCMC algorithm for t iterations, and let i be the most frequently visited state. Split the
chain into R regeneration tours defined by return visits to state i.

3. Compute the statistic Vt, the eigenvalue estimates λ̂i, i = 1, . . . ,m, and the p-value pt; see the Appendix

for details.

If pt ≤ α, reject the null hypothesis, continue for further n iterations, i.e. set t = t + n and return to

Step 2.

4. If pt > α, there is no evidence against the null hypothesis that the chain is in equilibrium by iteration

t.

We consider the Lugannani and Rice saddlepoint approximation and its extension (Wood et al., 1993) to

estimate the cumulative distribution function of
∑k+1

i=1 λiZ
2
i and approximate the corresponding p-value.

The computational complexity of implementing this convergence criterion is dominated by the cost of

computing Σ̂, of order O(kR+k2). See the Appendix for suggestions on reducing the computation time. For
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k small, the method is rather fast and the suggested convergence criterion can be used as a stopping rule.
When a small value of k is chosen, more states are merged as the k+1th state so the convergence assessment

becomes less precise. We suggest assurance of convergence at least for k = 1 as a minimum requirement for

using the consensus clustering diagram. This happens in our example for the MH algorithm.

3.3 Minimum burn-in

Intuitively a chain with a large number of iterations n has a higher chance of visiting states with small

posterior probability Πi. A formal result on how to choose a minimum sample size for observing a state with

a given probability can, however, be of practical concern in many applications. Theorem 3.2 below provides a

result of this kind under equilibrium. In other words, it provides a lower bound for burn-in sample. Suppose
Ei is the event of observing state i at least once in a reversible chain during a run of n iterations with Pij

being its one step transition probability.

Theorem 3.2 Let ǫ > 0 and ξ > 0 be given. Suppose Πi > ξ is the probability of state i at equilibrium. Then,

for a reversible chain, P(Ei) > 1− ǫ if

n >
log ǫ

log
{

(1− ξ
1−ξ

)(1− Pi,i)
} (6)

See Appendix for the proof.

Theorem 3.2 is a guide for providing a lower bound for the number of iterations required to visit the

state whose probability is greater than a given threshold. As expected, this lower bound depends on the

probability that the chain remains at the state i which, in turn, reflects how good the mixing is. This fact

was discussed by Peskun (1973) who showed that a chain with a smaller transition matrix trace has better

mixing. Equation (6) suggests the better the mixing is, the less the sample size required for visiting a state
with a given probability. Given that Pi,i is unknown in many applications, it should be estimated from a

preliminary sample. Under the best scenario, i.e. Pi,i = 0, we have n > log ǫ

log(1− ξ
1−ξ )

. If for instance we wish

the chance of observing a state whose posterior probability is greater than 0.001 be larger than 0.9999, the

chain must be run at least for n > 9196 iterations. Note that this result would not apply for non-reversible

chains such as the ordinary Gibbs sampler.

4 Case study

Messerli et al. (2007) study the metabolic pattern of 14 genetic mutants of Arabidopsis thaliana from mea-

surements of 43 metabolites (mostly sugars, sugar alcohols, amino acids and organic acids), obtained by the

method of gas chromatography mass spectrometry. Figure 1 presents the data, where mutants are represented

by integer labels, and four replicates are available for each mutant; exceptionally, for mutant 1, only three
replicates exist. These genetic mutants are described as follows: two mutants are defective in starch biosyn-

thesis (13,14); four are defective in starch degradation (9–12); a comparative mutant accumulates starch as

a pleiotropic effect (8); four are uncharacterized starch-excess mutants (4–7); and finally, three are wild-type

plants (1–3). The goal is to a perform metabolomic characterization of these mutants via clustering.

4.1 Data modelling

We fit the following hierarchical Bayesian model, suitable for high-dimensional, small-sample data sets (Par-

tovi Nia and Davison, 2012). Given the data allocation vector c,

yvctr − µ
iid∼ Normal1(γvcθvc + ηvct, σ

2)

γvc
iid∼ Bernoulli(p)

θvc
iid∼ Normal1(0, σ

2
θ)

ηvct
iid∼ Normal1(0, σ

2
η), (7)
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Figure 1: Plot of the log spectra (solid lines) of the metabolite data. Different colors indicate the category of
mutant: black for those defective in starch biosynthesis, red for those defective in starch degradation, green
for the comparative plant, blue for the uncharacterized mutants, and magenta for the wild types.

where Bernoulli(p) denotes the Bernoulli distribution with success probability p. The subscripts v = 1, . . . , V ,

c = 1, . . . , C, t = 1, . . . , Tc, r = 1, . . . , Rct denote, respectively, variable, cluster, mutant in cluster, and
replicate, where V is the number of variables, C is the number of clusters, Tc is the number of mutants in

cluster c, and Rct is the number of replicates of mutant t in cluster c. The Bernoulli variable γvc controls the

appearance of the clustering mean θvc to adjust for noise variables. The continuous parameter ηvct is added to

account for the between-mutant error in cluster c. The model parameters σ2 and σ2
η are the between-replicate

and between-mutant variance components, respectively, while σ2
θ is the variance of the disappearing random

mean component θvc.

Under the model specification in (7), the model parameters ηvct, θvc, and γvc can be integrated out, a

marginal likelihood mixture of two Normal distributions for each replicate

pNormal1(µ, σ
2 + σ2

η + σ2
θ) + (1− p)Normal1(µ, σ

2 + σ2
η).

Hyperparameters µ, σ2
η, σ

2
θ , σ

2 and p are estimated using the empirical Bayes approach. The estimated param-
eters and their asymptotic standard errors are µ = 0.083(0.028), σ2 = 0.159(0.005), σ2

θ = 5.100(2.721), σ2
η =

0.373(0.033), and p = 0.034(0.019).

Following Heard et al. (2006), we assume that the assignment of mutants to clusters is exchangeable. So

it suffices to specify a prior on Tc’s, the number of observations in cluster c (c = 1, . . . , C), and on the total

number of clusters C, where
∑C

c=1 Tc = T is the total number of mutants to be clustered:

π(c) = Pr(T1, . . . , TC | C) Pr(C),

and a uniform discrete prior is suggested for the total number of clusters,

Pr(C = c) = 1/T, c = 1, . . . , T,
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and the uniform multinomial-Dirichlet distribution is placed on the cluster totals given the number of clusters.
This yields the following prior

π(c) ∝ (C − 1)!T1! . . . TC !

T (T + C − 1)!
.

Figure 6 (left panel) presents the Bayesian hierarchical agglomerative clustering dendrogram, built using
the posterior distribution of the data allocation vector as the similarity measure (Partovi Nia and Davison,

2012). The dendrogram suggests the presence of five clusters in our data set. As the agglomerative method

may result in a poor approximation of the MAP clustering, we also explore the space of partitions by MCMC

sampling (Rasmussen, 2000). We consider the following two algorithms: (i) a reversible Gibbs sampler, i.e.,
a Gibbs sampler that updates cluster labels in a random order; and (ii) a split-merge Metropolis-Hastings

sampler. The split-merge sampler (Jain and Neal, 2004) uses Metropolis-Hastings updates to explore the

space of cluster allocations via split and merge moves with restricted Gibbs scans embedded within. The

advantage is that groups of observations can be updated at one time, and, if the proposed move is supported

by the data, then it is likely to be accepted, see Jain and Neal (2004) and Jain and Neal (2007) for more
discussion. In contrast, the Gibbs sampling algorithm with incremental updates is prone to becoming trapped

in local modes of the posterior distribution. We have implemented the split-merge sampler with five local

Gibbs scans and run the two samplers for n = 5 × 104 iterations. The results presented are for sensitivity

parameter ξ = 0.5; other choices of ξ gave similar results, suggesting that the prior π(c) does not play a
major role in the analysis.

To understand the performance of our proposed model better and make sure that our criterion truly

detects convergence/lack of convergence, we have calculated the posterior for all 1.9× 108 = B(14) possible

groupings for our case study. This formidable task becomes, of course, rather infeasible as the number of

subjects to cluster increases. The computation 1.9 × 108 possible groupings posterior took two weeks on a
Linux UBUNTU 12.04 LTS machine with 16 GB RAM, run on 8 parallel processors. This calculation provided

us the true normalizing constant and assured us that both samplers visited the true MAP groupings.

4.2 Convergence comparison with moment-based method

The moment-based method is appropriate for ordinal state spaces while clustering is concerned with nominal

states (groupings). For the sake of comparison we may therefore extract a binary Markov chain from the

MCMC samples of groupings by considering a specific grouping. In another words, the finite state-space
chain Xt = 1 if the chain is in a specific grouping or Xt = 0 otherwise. Then the convergence of the chain

is tested with respect to this grouping. We suggest that the test be run on the most frequently visited state

(grouping). This state is a proxy for the highest mass posterior state for a good sampler and hence it plays

a key role in making inference and even sometimes is the objective of an MCMC run. Therefore, before
starting the testing procedure, the maximum observed grouping must be found in the grouping chain, then

a binary chain must be constructed and fed into the convergence testing procedure.

The maximum a posteriori grouping estimation using the Gibbs sampler and using the MH sampler yield

the same grouping. Note that the MAP grouping found by both MCMC samplers is different to the grouping

found by the agglomeration method, see Figure 6. Both samplers suggest the following three clusters {6, 7},
{1, 8}, {2, 4, 5, 13, 3, 9, 10, 11, 12, 14} as the maximum a posteriori grouping, with the estimated probability

π̂i = 0.43 using the Gibbs sampler and π̂i = 0.34 using the MH sampler. This difference in the estimated

probabilities motivated us to run our convergence test to see if both chains have converged. As the chain is

binary, we may use the convergence method of Jones et al. (2006) developed for ordinal state spaces. Jones

et al. (2006) recommend simulating the Markov chain until the length of the half-width confidence interval
falls below a specified threshold ǫ.

Figure 3 presents the length of the half-width confidence interval for the rth posterior moment for r = 1,

computed every 100 iterations; this length is compared to threshold ǫ = 0.05 confirming convergence of both

chains. Figure 2 confirms convergence of the Gibbs sampler after about 8,000 iterations, but never accepts

convergence of the MH sampler. This result conflicts with that of Jones et al. (2006), as depicted in Figure 3,
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Figure 2: Convergence of our suggested method when a binary Markov chain is extracted from the MCMC
samples of groupings for data of Figure 1. The solid line is the Gibbs sampler and the dashed line is the split-
merge Metropolis-Hastings sampler. Plot of p-value of Vn versus the number of iterations n. A horizontal
line is drawn at 0.05 as the threshold for the p-values. The samples are converged if the curves fall above the
threshold. The vertical line represents the minimum sample size of observing a state with posterior larger
than 0.001 with probability 0.9999, derived using Theorem 3.2, see also Figure 3.
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Figure 3: Convergence methods of Jones et al. (2006) when a binary Markov chain is extracted from the
MCMC samples of groupings for data of Figure 1. The solid line is the Gibbs sampler and the dashed line
is the split-merge Metropolis-Hastings sampler. The vertical axis is the half length of confidence interval
(α = 0.05) for the mean of the two chains. The horizontal line shows the threshold value at ε = 0.05. The
samples are converged if the curves fall below the threshold. The vertical line represents the minimum sample
size of observing a state with posterior larger than 0.001 with probability 0.9999, derived using Theorem 3.2,
see also Figure 2.

accepts convergence for both chains. The main reason for this conflicting result is that our criterion uses the

extra available information (the posterior being known up to a constant), but Jones et al. (2006) only check

the moment stability (here the empirical probability) of a specified state. We, in addition, check whether
this stabilized empirical probability matches the posterior. Figures 2 suggests that even for grouping only 14

observations, a chain with 50,000 iterations may not satisfy the minimum convergence property for the MH

sampler.
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The conflict of convergence between the Gibbs and the MH sampler using our criterion motivated us to
study our test on a binary chain in more details. We consider two different situations: (i) binary chains

having different mixing and (ii) binary chains having the same mixing, but one chain being compared to a

slightly incorrect posterior. Wang (1981) introduces the Markov-Bernoulli chain with stationary distribution

Bernoulli(p) and dependence parameter ρ ∈ (0, 1), where the correlation between trials that are k steps apart
equals ρk. The autocorrelation ρk reflects the mixing, the smaller the ρ, the better the mixing will be.

We generate two Markov-Bernoulli chains of length 100, 000 with p = 0.43 and ρ = 0.1, or ρ = 0.9. Figure 4

shows the p-value computed every 200 iterations against the threshold of 0.05. The criterion confirms that
the chain with a better mixing, ρ = 0.1, converges to the stationary distribution faster than the chain with

the lower mixing ρ = 0.9. For the former chain, the p-value is almost always above the threshold, which

indicates that there is no evidence to reject the null hypothesis of stationarity. In comparison, for the latter

chain, after 1,000 iterations, the p-value drops below the threshold of 0.05, and remains around this value

until the end of the run. As both chains have the same stationary distribution we expect that the p-value
for the chain with the lower mixing will rise eventually, but this phenomenon requires a longer run.
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Figure 4: Plot of p-value of Vn versus the number of iterations n number for a binary Markov chain simulated
by the algorithm of Wang (1981). All chains have the same stationary distribution Bernoulli(p = 0.43).

When a multi-state chain is converted to a binary chain, the low mixing property may affect the observed

proportion, π̂i, of the state under consideration in a small run. This happens simply because a multi-state
chain with low mixing is more likely to become trapped in a low mass region and therefore requires a longer

run to match the observed proportion with the posterior.

5 Clustering

For simplicity, we assign to each distinct visited grouping an integer label. This labelling is consistent in the

sense that states visited by both samplers have identical integer labels. This time we target the top 10 most

visited states for each sampler. For a more detailed analysis we calculated the true posterior order of each
top visited grouping. In the ideal case both samplers hit the true ordering. Furthermore, in the ideal scenario

the proportion of visiting each grouping π̂i matches the true posterior probability πi for all 10 top visited

states. The Gibbs sampling and split-merge MH algorithms visit 697 and 268 distinct states, respectively

(out of which 228 states are visited by both algorithms). This suggests that the Gibbs sampling algorithm
explores the state space of data groupings more freely than the split-merge algorithm. Figure 5 (left panel)

confirms that the Gibbs sampling has better convergence properties as πi and π̂i fall closer to the reference

line πi = π̂i. Figure 5 (right panel) shows that both samplers visit the true 5 highest posterior groupings,

but afterwards the MH sampler is more likely to be trapped in low mass region and visit the groupings with

smaller posterior probability. In the right panel of Figure 5 the ratio fi =
π̂i

πi
is nearly constant for the Gibbs
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Figure 5: Left panel: plot of πi versus π̂i for the Gibbs sampler (circle) and the split-merge Metropolis-
Hastings sampler (square). Right panel: the top observed state i versus fi = π̂i/πi : the Gibbs sampling
(circles connected with solid lines) and split-merge MH algorithm (squares connected with dashed lines);
large π̂i

πi
ratios correspond to states that were visited more often than expected. The digit inside the circles

and squares are the order according to the true posterior.

sampler. This is not the case for the MH sampler. Running the convergence criterion again targeting top 10
most visited states, yields a graph similar to Figure 2, accepting the convergence for the Gibbs sampler and

rejecting the convergence for the MH sampler.

For the multi-class case we chose the top 10 states because this choice gave us estimated posterior prob-

abilities > 0.001. The consistent estimation of variance covariance matrix Σ for a group of states using the

regeneration method requires the states being observed more than once. An appropriate choice of the number
of states can be found by computing the average time of regeneration. If the convergence is calculated each

m iterations, the regeneration length should be at least m
2 giving on average two sequences to update the

variance estimation. The average regeneration for both chains was around 70 iterations for top 10 states,

and we updated p-values every 200 iterations.

Figure 2 suggests that the Gibbs sampler has converged, unlike MH sampler. Having computed the pos-
terior for all possible groupings, we further studied convergence of both samplers graphically using Figure 5.

Figure 5 also confirms the result of Figure 2. We have therefore used the result of the Gibbs sampler to

cluster our data.

Figure 6 (right panel) displays a representative dendrogram based on the output of the Gibbs sampling

algorithm; colours denote different MAP clusters. This dendrogram is reliable, since the chain is confirmed
to have converged. This dendrogram was obtained by taking the most frequently visited allocation as the

reference allocation, and constructing a dendrogram using observed agglomerations and divisions of this

reference allocation. Figure 7 is the result of applying consensus clustering (Murua et al., 2008) to the

output of the reversible Gibbs sampler. Again such a diagram can be drawn for the Gibbs sampler only as

the convergence for the MH sampler is doubtful. In consensus clustering for each pair of observations, an
indicator function is defined, taking value 1 if the observation belongs to the same cluster, and 0 otherwise.

The values of these indicator functions are estimated by MCMC empirical averages, approximating the

posterior probability that a pair of observations falls into the same cluster. Several threshold values are

applied, giving different clustering possibilities associated to different uncertainties.

We used R (http://www.r-project.org/) for our computation; in particular, the contributed packages
bclust (Partovi Nia and Davison, 2012) for clustering, labeltodendro (Partovi Nia and Stephens, 2010)

and ape for visualization, and partition for generating all possible groupings of 14 mutants.
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Figure 6: Tree diagrams Left : Dendogram resulting from agglomerative Bayesian clustering. Right : Dendrogram
extracted from the reversible Gibbs sampler output. The dashed gray circle shows the MAP clustering cutting point.
The colours highlights the MAP grouping found by cutting the tree with the dashed circle.
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Figure 7: Consensus clustering diagrams. Top left : no threshold. Top right : threshold at 0.99. Bottom left :
threshold at 0.9. Bottom right : threshold at 0.5. Labels are colored according to the optimal grouping found
by the agglomerative algorithm; see Figure 6 (left panel).



Les Cahiers du GERAD G–2014–52 13

6 Discussion

Bayesian clustering via MCMC methods is concerned with exploring the nominal state space of groupings.

We proposed a convergence criterion for MCMC algorithms on nominal finite state spaces that is widely

applicable to algorithms such as Gibbs sampling and Metropolis-Hastings. We implemented this criterion to
MCMC sampling of groupings, under the assumption that the marginal posterior distribution of groupings

is tractable. In particular, we defined a one-dimensional variance-like statistic and proposed an intuitive

hypothesis test for lack of convergence to the stationarity distribution which is known up to a normalizing

constant. Theorem 3.1 presents the asymptotic distribution of this statistic. We recommend monitoring
qualitatively the p-value of the test that rejects the null hypothesis for large values of the variance statistic

being computed over high mass regions or over the top visited states. Since more frequently visited states

and high mass regions may differ, we also derive an approximate lower bound in Theorem 3.2 for the number

of iterations required to visit a high mass state, under the stationarity assumption.

Estimation of the asymptotic variance-covariance matrix in the Markov chain CLT is a computationally
intensive problem that has generated some interest in recent years. We use the method of regenerative

simulation for this task, with computational and storage costs of order O(k2), where k is the number of

states under consideration in an MCMC sampling algorithm. The performance of regenerative simulation

can be poor when the state space explored is large. We can resolve this deficiency by merging low mass
states.

In practice, we recommend computing the proposed test statistic over the top k most visited states

and merging the remaining states as the state k + 1. In Section 4 we compared the proposed convergence

assessment criterion to that of Jones et al. (2006) on MCMC output from the Gibbs sampling and MH

split-merge algorithms, and concluded that the Gibbs sampler converges much faster than the split-merge
Metropolis-Hastings samples. Given that the Gibbs sampler explores a wider neighbourhood for a small

number of clustering objects, this observation may be expected.

In Bayesian clustering via non-conjugate models (Jain and Neal, 2007; Kim et al., 2006; Tadesse et al.,

2005) sampling from the posterior distribution is performed by the reversible jump algorithm (Richardson and
Green, 1997). For these models, the marginal posterior distribution of partitions may not have a tractable

form, and our convergence criterion would not apply. Our preliminary study indicates that it is possible to

devise a similar convergence diagnostic tool utilizing the detailed balance condition. We, finally, note that

in the derivation of the asymptotic distribution of the proposed criterion m, the number of visited states is

considered fixed.

Appendix

Proof of Theorem 3.1

Since Sm,n and S are asymptotically interchangeable, the proof is given in terms of the former state space.

Irreducible and aperiodic Markov chains on finite state spaces are uniformly ergodic (Roberts and Rosenthal,

2004) hence the condition of geometric ergodicity of X is satisfied.

Split the chain X into R = R(n) regeneration tours, where n is the length of X . Let nr = τr − τr−1

denote the length of the rth tour; the average tour length is n̄ = R−1
∑R

r=1 nr. For i ∈ Sm,n, define

sr,i =

τr−1
∑

k=τr−1

I(Xk = i),

the number of visits to state i in the rth tour, r = 1, . . . , R. The pairs (nr, sr,i), r = 1, . . . , R are independent

and identically distributed, for fixed i. Similarly, for i 6= j, define

sr,ij =

τr−1
∑

k=τr−1

I(Xk ∈ {i, j}) = sr,i + sr,j,

the number of visits to states i or j in the rth tour.



14 G–2014–52 Les Cahiers du GERAD

For i ∈ Sm,n, the CLT result in Equation (3) applies with gi(x) = I(x = i) (where EΠ|gi|2+ǫ = Πi ∀ǫ > 0).
As R → ∞,

wi,n =
√
R (π̂i −Πi) =

√
R

{

1

τR − 1

τR−1
∑

k=1

gi(Xk)− EΠgi

}

D−→ Normal1(0, σii),

where the asymptotic variance has the following expression (Hobert et al. 2002)

σii =
EQ

{

(s1,i − n1EΠgi)
2
}

{EQ(n1)}2
=

EQ

{

(s1,i − n1Πi)
2
}

{EQ(n1)}2
. (8)

By the Cramér-Wold Device, wn
D−→ Normalm(0,Σ) as R → ∞, where 0 is an m-dimensional column vector

of zeros and Σ = {σij}mi,j=1 is an m×m variance-covariance matrix. The diagonal elements of Σ are given
in Equation (8), and the off-diagonal elements are

σij = lim
R→∞

cov(wi,n, wj,n)

=
1

2
lim

R→∞
[var(wi,n + wj,n)− var(wi,n)− var(wj,n)]

=
1

2

[

lim
R→∞

var

{

√
R

(

1

τR − 1

τR−1
∑

k=1

gi,j(Xk)−Πi −Πj

)}

− σii − σjj

]

, (9)

where the asymptotic variance is given by the Markov chain CLT with gi,j(x) = I(x ∈ {i, j}). In particular,
as R → ∞,

√
R

{

1

τR − 1

τR−1
∑

k=1

gi,j(Xk)− EΠgi,j

}

D−→ Normal1(0, ηij),

where

ηij =
EQ

{

[s1,ij − n1EΠgi,j ]
2
}

{EQ(n1)}2

=
EQ

{

[s1,ij − n1(Πi +Πj)]
2
}

{EQ(n1)}2
.

So, σij =
1
2 [ηij − σii − σjj ].

Since wn
D−→ Normalm(0,Σ) as R → ∞, it follows that Cwn

D−→ Normalm(0,CΣC′) as R → ∞. By

expressing the variance test statistic Vn as Vn = (Cwn)
′(Cwn), we conclude that Vn

D−→
∑m

i=1 λiZ
2
i as

R → ∞, where λ1, . . . , λm are the eigenvalues of CΣC′ and Z1, . . . , Zm are independent standard normal

variables (Chernoff and Lehmann, 1954, Lemma 1).

It remains to show how to consistently estimate the entries inΣ. Following Hobert et al. (2002), consistent

estimators (as R → ∞) of σii and σij are given by

σ̂ii =

∑R

r=1 (sr,i − π̂inr)
2

Rn̄−2

σ̂ij =
1

2

{

∑R

r=1(sr,ij − π̂ijnr)
2

Rn̄−2
− σ̂ii − σ̂jj

}

=

∑R

r=1(sr,i − π̂inr)(sr,j − π̂jnr)

Rn̄−2
,
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respectively, where π̂ij = π̂i + π̂j . In practice, Σ̂ (the variance-covariance matrix with estimated entries)
might not be positive semidefinite, so we find the nearest positive semidefinite matrix to Σ̂ in the Frobenius

norm to within a given tolerance level (?). Then, let λ̂1, . . . , λ̂m be the eigenvalues of this approximation to

Σ̂.

The computational complexity of computing Σ̂ is of the order O(kR+ k2). If successive computations of

Σ̂ (at iterations t1 and t2, t1 < t2) are based on the same splitting of the chain (i.e., using the same state x′),

resulting in R1 and R2 tours, respectively, then for all states i visited up to time t1, s
(t2)
r,i = s

(t1)
r,i for r ≤ R1.

In other words, values sr,i at time t2 can be updated from values at time t1, thus reducing computation time.

Proof of Theorem 3.2

P(Ei) =

n
∏

t=1

P(Xt 6= i | Xt−1 6= i),

but under equilibrium

P(Ei) = {P(X2 6= i | X1 6= i)}n.
On the other hand

P(X2 6= i | X1 6= i) = 1− P(X2 = i | X1 6= i)

= 1− P(X1 6= i | X2 = i)
P(X2 = i)

P(X1 6= i)

which equals

1− 1

1−Πi

M
∑

j=1

P(X1 = j | X2 = i)P(X2 = i)− P(X1 = i | X2 = i)P(X2 = i),

and under reversibility

= 1− 1

1−Πi

M
∑

j=1

P(X2 = i | X1 = j)P(X1 = j)− P(X1 = i | X2 = i)P(X2 = i)

= 1− Πi

1−Πi

(1− Pi,i).
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