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Abstract: An artificial olfaction called electronic nose (e-nose) relies on an array of gas sensors with the
capability of mimicking the human sense of smell. Applying an appropriate pattern recognition on the
sensor’s output returns odor concentration and odor classification. Odor concentration plays a key role in
analyzing odors. Assuring the validity of measurements in each stage of sampling is a critical issue in sampling
odors. An accurate prediction for odor concentration demands for careful monitoring of the gas sensor array
measurements through time. The existing e-noses capture all odor changes in its environment with possibly
varying range of error. Consequently, some measurements may distort the pattern recognition results. We
explore e-nose data and provide a statistical algorithm to assess the data validity. Our online algorithm is
computationally efficient and treats data as being sampled.

Key Words: Artificial olfaction, electronic nose, gas sensor, odor, outlier, robust covariance estimation.
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1 Introduction

The ability to recognize the chemicals in the environment is a very basic and essential need for the living

organisms; from a single-cell amoebae to human beings, all species are provided with a chemical awareness

system. Human beings have three sensory systems to detect odors: sense of taste, sense of smell, and

chemical feel with receptors all over the body. All species employ their chemical senses to approach and

being attracted to possibly safe conditions, as well as avoiding and being resisted to the harmful ones. As

for human beings, in every breath, the sense of smell collects a sample from its environment and forwards it

to the brain for further analyses. Unlike the sense of taste, smell can be captured from a distance and assist

the brain in producing a warning. Unfortunately, the human sense of smell does not respond to all harmful

air pollutants. Additionally, sensitivity of humans to many air pollutants varies — one can be accustomed

to a toxic smell. In the last decade, great attention has been paid to the subject of air quality because

it directly influences the environmental and human health. A crucial element in assessment of indoor and

outdoor air quality is auditing the odorants. There exists various odor measurement techniques such as

dilution-to-threshold, olfactometers, and referencing techniques (McGinley and Inc, 2002). The performance

of these approaches depend on human evaluation. Due to the high variability of individual’s sensitivity, the

common methods mostly lack accuracy. In 1982, the first gas multisensor array was invented as primary

artificial olfaction (Persaud and Dodd, 1982). The term electronic nose (e-nose) was introduced by Gardner

and Bartlett (1994). E-nose is an artificial olfactory system which consists of an array of gas sensors. The e-

nose is designed for recognizing complex odors in its surrounding environment. The gas sensor array receives

chemical information about gaseous mixtures as input and converts it to measurable signals. Sensors act

independently and simultaneously in this device. Cross-sensitivity of gas sensors is inevitable in sensor array

structure. The cross-sensitivity is the interaction among chemicals that leads to a different signal from the

component in a mixture compared to the single component. Gas sensor’s performance is affected by different

elements which make it unstable and less sensitive to odors. One of the most serious deterioration in sensors

is owing to a phenomenon called drift. Drift is a temporal change in sensor’s response while all other external

conditions are kept constant. The majority of manufactured sensor arrays are subject to drift, and several

methods have been introduced to overcome this problem (Carlo and Falasconi, 2012; Artursson et al., 2000;

Padilla et al., 2010; Zuppa et al., 2007). The behavior of a sensor is directly influenced by the surrounding

chemical and physical conditions. For instance, the sensor response may depend on the temperature of the gas

under examination. Therefore, thermal conditions around the sensing elements need to be supervised. The

multivariate response of gas sensor arrays undergoes different pre-processing procedures before the prediction

is performed using statistical tools such as regression, classification, or clustering. Numerous methods have

been developed for analyzing the gas sensor array data, including Gutierrez-Osuna (2002); Kermiti and Tomic

(2003); Bermak et al. (2006).

2 Problem statement

The e-nose has partially addressed the human sense of smell in diverse industrial sites. Unwanted variability

may occur in sensor’s output data. This happens due to environmental factors or physical impairment of the

system, since e-noses are installed in outdoor fields where the conditions can dramatically fluctuate. This

demands for monitoring the critical factors through adding extra sensors and temperature compensation in

sensor pre-processing. The sensor’s output is used to quantify odor concentration. Transferring the data

to olfactometry is both time consuming and costly. Only small portions of data are appointed for further

analyses of its concentration in olfactometry. Pattern recognition methods are employed in order to predict

the odor concentration for each set of sensor values. To assess the accuracy of predictions, the validity of

sensor values must be ensured. Sensors in the e-nose structure may report incorrect values or some stop

functioning for a short period of time. These anomalies are ought to be diagnosed and reported in real time

using a computationally efficient algorithm.
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3 Data description

The data under the study include 11 distinct attributes, each representing sensor values of the e-nose. Sensors

react to almost all gases in the air, but they are designed so that each sensor is more sensitive to a specific

type of gas. Some of the sensors are highly positively correlated with each other, see Figure 1 and Figure 2

left panel.
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Figure 1: Senor’s output during three days of sampling for 4 randomly selected sensors.
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Figure 2: Left panel, heatmap of the correlation matrix of the sensor values (s1–s11). Right panel, the
undirected graph of partial correlation using the graphical lasso. The undirected graph of the right panel
approves the block structure of the heatmap of the left panel.
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Suppose that x
>

p×1 is a random vector of p = 11 attributes, in which a
>

illustrates the transpose of vector

a, and its n independent realization are stored in the rows of data matrix Xn×p. The covariance matrix of

xp×1 , say Σ = [σij ]i,j=1,2,...,p, is defined as

Σp×p = Cov(x) = E{(x− µ)(x− µ)
>
},

where µ represents the mean of x, E is the expectation operator. The covariance, σij , measures the degree to

which two attributes are linearly associated. It is well-known that the inverse of covariance matrix, commonly

known as precision matrix, yields the partial correlation between the attributes. The partial correlation is

the correlation between two attributes conditioning on the effect of other attributes. Non-zero elements

of Σ−1 implies the conditional dependence. Therefore, the sparse estimation of Σ−1 pinpoints the block

dependent structure of attributes. The sparse estimation of Σ−1 set some of the Σ−1 entries exactly to

zero. Investigation of the inherent dependence between the sensor values is then performed by means of the

partial correlation. In order to obtain a clear image of sensors which are potentially grouped together, the

graphical lasso (Friedman et al., 2008) is used. Friedman et al. (2008) considered estimating the inverse of

covariance matrix, Σ−1, sparsely by applying a lasso penalty (Tibshirani, 1996). In Figure 2 (right panel),

the undirected graph connects two variables which are conditionally correlated given all other attributes. For

instance, the sensors 9, 10, and 11 are conditionally correlated with each other. This also agrees with the

heatmap of the correlation matrix Figure 2 (left panel). Thus, this dependence must be taken into account

while modeling data. Another vital assumption that should be verified is the normality of the data. The

non-normality of the sensor values is established using various methods such as analyzing the distribution of

individual sensor values, scatter plot of the linear projection of data using principal components, estimating

the multivariate kurtosis and skewness, and also multivariate Mardia test, see Figure 3.
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Figure 3: Left panel, the Q-Q plot of squared Mahalanobis distance supposed to follow chi-square distribution
for normal data. Right panel, the marginal density for some randomly chosen sensor values. Both graphs
confirm the non-normality of data.

4 Methodology

In order to demonstrate the validity of the e-nose measurements, we aim to allocate each sample to different

zones. To be able to verify the validity of the measurements, it is necessary to have some reference samples for

the purpose of comparison. These reference samples are collected while the e-nose is at its best performance,

and the conditions are fully under control. For the data set under the study, there are two distinct reference

sets. Reference 1 is constituted of data in a period of sampling defined by an expert after installation of

the e-nose. We call the data in this period of sampling as proposed set. Reference 2, upon its availability, is

manually gathered samples from the field and brought to the laboratory to quantify the odor concentration.

We call the latter data, calibration set to emphasize that it can be used for data modeling using supervised
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learning. If new data diverge greatly from the overall pattern of data previously seen, then it is marked as

an outlier and is allocated to the red zone. This zone represents a dramatic change in the pattern of samples

and refer to “risky” samples. If new data is non-outlier and it is also located within the data polytope of the

Reference 1 or the Reference 2, it is assigned to green or blue zone respectively. These zones represent the

“safe” samples. If new data is non-outlier, but outside of the area of green and blue zones, it is assigned to

yellow zone. This zone displays potentially “critical” samples.

Producing many samples belonging to the yellow and the red zones is an indication of a major flaw in

the system. Physical complications, such as sensor loss in the e-nose, or sudden changes in the chemical

pattern of the environment, account for all undesirable measurements. Zone assignment, therefore, require

some outlier detection algorithms. To define the green and the blue zones, the new samples are projected

onto a lower dimension subspace. Dimension reduction methods such as principal component analysis (PCA)

can serve this purpose (Jolliffe, 2002). PCA transforms a collection of possibly correlated attributes into a

set of linearly uncorrelated axes through orthogonal linear transformations. The first k (k < p) principal

components are the eigenvectors of the covariance matrix Σ associated with the k largest eigenvalues. PCA

exploits empirical covariance matrix, Σ̂, which is extremely sensitive to outliers (Prendergast, 2008). Since

the data contain many outliers, robust covariance estimation must be applied to avoid misleading results.

Robust principal component analysis (Hubert et al., 2005) is employed for dimension reduction purpose

throughout this paper. This robust PCA computes the covariance matrix through projection pursuit (Li and

Chen, 1985) and minimum covariance determinant (Croux and Haesbroeck, 2000) methods. The robust PCA

procedure can be summarized as follows:

1. The matrix of data is pre-processed such that the data spread in the subspace of at most n−1 if p > n.

2. In the spanned subspace, the most obvious outliers are diagnosed and removed from data. The covari-

ance matrix is calculated for the remaining data, Σ̂0.

3. Σ̂0 is used to decide about the number of principal components to be retained in the analysis, say k0
(k0 < p).

4. The data are projected onto the subspace spanned by the first k0 eigenvectors of Σ̂0.

5. The covariance matrix of the projected points is estimated robustly using minimum covariance deter-

minant method and its k leading eigenvalues are computed. The corresponding eigenvectors are the

robust principal components.

To define the red zone, it is required to find the outliers of data as it is being measured by the e-nose

through time. As the data fail to follow a normal distribution, outlier detection methods that rely on the

assumption of elliptical contoured distribution should be avoided. Here, outliers are flagged by means of

adjusted outlyingness (AO) criterion (Brys et al., 2006). If a sample is detected as an outlier by AO measure,

it belongs to the red zone. For the specification of the remaining zones, we need to define the polytopes of

the samples in Reference 1 and Reference 2. These polytopes are built using the convex hull of the robust

principal component scores. More specifically, the boundary of the green zone is defined by computing the

convex hull of the robust principal component scores of the Reference 1. A short description of each zone is

provided in Table 1. Before determining the color tag for each new data, the samples are checked for missing

values and are imputed in case needed by multivariate imputation methods such as Josse et al. (2011). The

idea behind the validity assessment is visualized in Figure 4. For simplicity, only 2 sensors are used for all

computations in Figure 4 and a 2D presentation of zones is plotted using the sensors’ coordinates. Suppose

that XN×11 represents the matrix of sensor values for N samples, yN the vector of corresponding odor

concentration values and x
>

l is the lth row of XN×11, l = 1, 2, . . . , N . Furthermore, suppose that n1 refers

to the number of samples in the proposed set of the sampling and n2 refers to the number of samples in

the calibration set. The samples of the proposed set are always available, but not necessary the calibration

set. Two different scenarios occur based on the availability of the calibration set. If the calibration set is

accessible, then Scenario 1 happens. Otherwise, we only deal with Scenario 2. Scenario 1 is a general case

which is explained more in details. The data undergo a pre-processing stage, including imputation and outlier

detection, before any further analyses. Having done the pre-processing stage, data are stored as Reference 1,

Xn1×11, and Reference 2, Xn2×11. The first k, e.g. k = 2, 3, robust principal components of Xn1×11 are



Les Cahiers du GERAD G–2015–81 5

Table 1: Description of each zones in validity assessment procedure.

Zone Description

Red Observations that are outliers in terms of AO measure.

Green
Observations that are non-outliers in terms of AO measure. Moreover, they fall into the
polytope of the Reference 1.

Blue
Observations that are non-outliers in terms of AO measure. Moreover, they fall into the
polytope of the Reference 2.

Orange
Observations that are non-outliers in terms of AO measure. Moreover, they fall into the
polytopes of both the Reference 1 and the Reference 2.

Yellow
Observations that are non-outliers in terms of AO measure. Moreover, they do not fall into
the polytope of neither the Reference 1 nor the Reference 2.
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Figure 4: Validity assessment for about 700 samples based on 2 sensor values. Left panel, the plot illustrates
the contour map of estimated density function for the 2 sensors. Right panel, the density function of the
samples demonstrated in 3D with zones identified for each of the samples in the sensor 1 (s1) versus sensor
2 (s2) plane. Higher density is assigned to green, blue, and orange zones compared to yellow and red zones.

calculated and the corresponding loading matrix is denoted by L1. The pseudo code of two algorithms for

Scenario 1 is provided below. Scenario 2 is a special case of Scenario 1 in which Sub-Algorithm (Scenario 1)

is used with ConvexHull(2) = ∅ that eliminates the blue and the orange zones. Consequently, there is no

model for odor concentration prediction in the Main Algorithm.

Sub-Algorithm 1 (Scenario 1)

1: if the point x
>

l , l = 1, 2, . . . , N is identified as an outlier by AO measure then

2: x
>

l is in red zone,

3: else if x
>

l L1 ∈ ConvexHull(1) AND x
>

l L1 6∈ ConvexHull(2) then

4: x
>

l is in green zone,

5: else if x
>

l L1 6∈ ConvexHull(1) AND x
>

l L1 ∈ ConvexHull(2) then

6: x
>

l is in blue zone,

7: else if x
>

l L1 ∈ ConvexHull(1) AND x
>

l L1 ∈ ConvexHull(2) then

8: x
>

l is in orange zone,
9: else

10: x
>

l is in yellow zone.
11: end if
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Main Algorithm 2 (Scenario 1)

Require: Xn1×11, Xn2×11, and the loading matrix L1 using robust PCA over Reference 1, Xn1×11.

1: ConvexHull(1) ← the convex hull of the projected values of the Reference 1, Xn1×11L1.
2: Train a supervised learning model on Reference 2, Xn2×11, and its odor concentration vector, yn2

.

3: ConvexHull(2) ← the convex hull of the projected values of the Reference 2, Xn2×11L1.
4: Do Sub-Algorithm for new data x∗.
5: Predict the odor concentration for new data x∗ using the trained supervised learning model.

The above steps are implemented over 8 months of data collected by the e-nose.

5 Results

For the easy visualization, the first 3 robust principle components of the data are used, PC1, PC2, PC3.

These components correspond to the 3 largest eigenvalues of the covariance matrix. In case of sensor failures,

the data contain missing values that need to be imputed. First, data are imputed to replace all the missing

values, and then the validity of the measurements are identified over the 8 months sampling. Only a subset of

500 samples out of 200 thousands of observations are plotted to make the graphs more readable. In Figure 5,

the sample points are drawn in gray and each zone is highlighted using its corresponding color of Table 1.

The circles in Figure 5 are also illustrated on PC1 and PC2 plane for a better demonstration of the zones.

The zones’ definition is helpful in interpreting the results. As an example, the green or the blue zone reveals

the fact that the sampling points are very close to the samples that have already been observed in either

Reference 1 or Reference 2. The observations in reference sets were entirely under control, therefore, the blue

and green zones justify the validity of samples. Consequently, the prediction obtained over these samples is

expected to be more accurate. On the contrary, the prediction values for the points in the yellow zone are

less accurate compared with the green and the blue zones. In other words, the data that are dissimilar to

the already observed data deserve further attention. These points are the potential outliers and are reported

in the red zone. Additionally, this also reveals that the predictions values associated with such data can be

misleading. Producing a noticeable percentage of samples belonging to the yellow and the red zones referring

to the possible failure of the e-nose equipment.

6 Conclusion

Electronic nose devices have received a continuous attention in the field of sensor technology recently. Most

applications of e-nose are in industrial production, processing, and manufacturing including quality control,

grading, processing controls, gas leak detection, and monitoring odors. The measurement quality of the

e-nose depends on its sensor’s performance. Due to the high variability of the gases in the air and the

sensitivity of the sensor values, e-nose measurements can fluctuate very often and fail to maintain a certain

level of precision. An automatic procedure that detect the samples validity in an online fashion has been a

technical shortage and was addressed in this work. This allows administrators to take the subsequent steps in

an effective manner like sampling new observations from the field and re-calibrating the system if necessary.
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Figure 5: A random sample of size N = 500 are plotted over the first three robust principal components
coordinates. From top left panel to bottom right panel, the colored blobs represent green, blue, yellow, and
red zones respectively.
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